Skip to main content
Log in

Fischer–Tropsch synthesis in the presence of ultrafine iron-containing catalysts derived from reverse microemulsions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

It is shown that active catalysts for Fischer–Tropsch synthesis with a controlled size of the particles of the dispersed phase may be formed on the basis of reverse microemulsions in a slurry reactor. After optimization of the composition of the reverse microemulsion (iron nitrate nonahydrate as a precursor of the active metal and SPAN-80 as a surfactant, 5 wt %), the size of the microemulsion droplets decreases to 130 nm. The chosen method for the synthesis of catalytic systems makes it possible to introduce promoters without any marked enlargement of the dispersed phase (130–160 nm). High-temperature Fischer–Tropsch synthesis is performed in a slurry reactor using catalysts prepared from reverse iron-containing microemulsions. The tested iron-containing catalytic systems feature high selectivity (up 73 wt %) in the formation of gasoline fractions (the C5–C10 fraction) that contain an abnormally high (up to 77 wt %) level of unsaturated hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ellepola, J., Thijssen, N., Grievink, J., Baak, G., Avhale, A., and van Schijndel, J., Comput. Chem. Eng., 2012, vol. 42, p. 2.

    Article  CAS  Google Scholar 

  2. Maitlis, P.M. and de Klerk, A., Greener Fischer–Tropsch Processes for Fuels and Feedstocks, Wiley, 2013.

    Book  Google Scholar 

  3. Rahimpour, M.R., Jokar, S.M., and Jamshidnejad, Z., Chem. Eng. Res. Des., 2012, vol. 90, p. 383.

    Article  CAS  Google Scholar 

  4. Krylova, A.Yu., Kulikova, M.V., Lyadov, A.S., and Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, p. 24.

    Article  Google Scholar 

  5. Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, p. 1.

    Article  CAS  Google Scholar 

  6. Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Pet. Chem., 2013, vol. 53, no. 6, p. 374.

    Article  CAS  Google Scholar 

  7. Kadieva, M.Kh., Khadzhiev, S.N., Kadiev, Kh.M., and Yakovenko, T.V., Pet. Chem., 2011, vol. 51, no. 6, p. 426.

    Article  CAS  Google Scholar 

  8. Kadieva, M.Kh., Cand. Sci. (Chem.) Dissertation, Moscow: Topchiev Inst. Petrochem. Synth., Russ. Acad. Sci., 2011. http://elibrary.ru/author_items.asp?authorid=634460

    Google Scholar 

  9. Tovstun, S.A. and Razumov, V.F., Russ. Chem. Rev., 2011, vol. 80, no. 10, p. 953.

    Article  CAS  Google Scholar 

  10. Makhin, D.Yu. and Davidovich, V.A., Pererab. Nefti Gaza, Nefte-Gazokhim., 2013, vol. 270, no. 1, p. 97.

    Google Scholar 

  11. Khadzhiev, S.N., Kadiev, Kh.M., Yampolskaya, G.P., and Kadieva, M.Kh., Adv. Colloid Interface Sci., 2013, vols. 197–198, p. 132.

    Article  Google Scholar 

  12. Eastoe, J., Hollamby, M.J., and Hudson, L., Adv. Colloid Interface Sci., 2006, vols. 128–130, p. 5.

    Article  Google Scholar 

  13. Catalysis in C 1 Chemistry, Keim, W., Ed., Amsterdam: Springer, 1983.

  14. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2004.

    Google Scholar 

  15. Berge, VikC., Solsvik, J., Hillestad, M., and Jakobsen, H.A., Chem. Eng. Technol., 2015, vol. 38, no. 4, p. 690.

    Article  Google Scholar 

  16. ORYX GTL. www.oryxgtl.com.qa/what-is-gtl.html

  17. Gas to liquids (GTL). http://petrowiki.org/Gas_to_liquids_(GTL)

  18. Hu, J., Yu, F., and Lu, Y., Catalysts, 2012, vol. 2, p. 303.

    Article  CAS  Google Scholar 

  19. Lyadov, A.S., Cand. Sci. (Chem.) Dissertation, Moscow: Topchiev Inst. Petrochem. Synth., Russ. Acad. Sci., 2012. http://elibrary.ru/author_items.asp? authorid=615417

    Google Scholar 

  20. de Klerk, A., Catal. Today, 2008, vol. 130, p. 439.

    Article  Google Scholar 

  21. GlobeCore, Possibilities and prospects of the Fischer–Tropsch synthesis. http://blending.globecore.ru/2015/02/14/fisher_tropsh/

  22. Natl. Energy Technology Lab., Fischer–Tropsch synthesis www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/ftsynthesis

  23. Natl. Energy Technology Lab., Commercial use of Fischer–Tropsch synthesis. www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/sasol

  24. Stranges, A.N., Stud. Surf. Sci. Catal., 2007, p. 1.

    Google Scholar 

  25. Karakhanov, E.A., Soros. Obrazovat. Zh., 1997, no. 3, p. 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kulikova.

Additional information

Original Russian Text © M.V. Kulikova, M.V. Chudakova, O.S. Dement’eva, M.I. Ivantsov, N.V. Oknina, 2016, published in Nanogeterogennyi Kataliz, 2016, Vol. 1, No. 1, pp. 76–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, M.V., Chudakova, M.V., Dement’eva, O.S. et al. Fischer–Tropsch synthesis in the presence of ultrafine iron-containing catalysts derived from reverse microemulsions. Pet. Chem. 56, 535–539 (2016). https://doi.org/10.1134/S0965544116060062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116060062

Keywords

Navigation