Skip to main content
Log in

Modification of hollow fiber ultrafiltration membranes by interfacial polycondensation: Monomer ratio effect

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of the component ratio on the permeability and contact angle of ultrafiltration polysulfone hollow fiber membranes modified by interfacial polycondensation of triethylenetetramine (TETA) and isophthaloyl chloride (IPC) has been studied. It has been found that the dependence of the rejection factor on the monomer ratio in the TETA: IPC range from 1: 28 to 20: 1 has two peaks. The first rejection peak is observed in a narrow range of TETA: IPC ratios close to 7: 1. The second peak is observed in a rather broad range of isophthaloyl chloride excess, at TETA: IPC equivalent ratios 1: (5–15). The membrane pure water flux was shown to change conversely to the rejection coefficient. The influence of the average functionality of the system on the change in the selectivity of the modified membranes was studied. A correlation between hydrophilicity and permeability of the modified membranes was revealed: with decreasing contact angle the pure water flux enhances, and the rejection coefficient decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. J. Petersen, J. Membr. Sci. 81, 81 (1993).

    Article  Google Scholar 

  2. V. Freger, J. Gilron, and S. Belfer, J. Membr. Sci. 209, 283 (2002).

    Article  CAS  Google Scholar 

  3. Y. Song, P. Sun, L. L. Henry, and B. Sun, J. Membr. Sci. 251, 67 (2005).

    Article  CAS  Google Scholar 

  4. J. Zuo, J. Lai, and T. Chung, J. Membr. Sci. 343, 47 (2014).

    Article  CAS  Google Scholar 

  5. D. Hua, Y. Kang Ong, and P. Wang, J. Membr. Sci. 471, 155 (2014).

    Article  CAS  Google Scholar 

  6. P. W. Morgan, Condensation Polymers: By Interfacial and Solution Methods (Interscience, New York, 1965).

    Google Scholar 

  7. V. G. Dzyubenko, V. P. Dubyaga, I. I. Shishova, et al., RU Patent No. 2 492 916 (2013).

    Google Scholar 

  8. V. V. Korshak, Synthetic Heterochain Polyamides (Akademiya Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  9. K. Yoon, S. B. Hsiao, and B. Chu, J. Membr. Sci. 326, 484 (2009).

    Article  CAS  Google Scholar 

  10. Y. Zhang, C. Xiao, E. Liu, et al., Desalination 191, 291 (2006).

    Article  CAS  Google Scholar 

  11. S. Verissimo, K. Peinemann, and J. Bordado, J. Membr. Sci. 279, 266 (2006).

    Article  CAS  Google Scholar 

  12. K. Koyama, J. Appl. Polym. Sci. 27, 2783 (1982).

    Article  CAS  Google Scholar 

  13. A. K. Ghosh, B.-H. Jeong, X. Huang, and E. M. V. Hoek, J. Membr. Sci. 311, 34 (2008).

    Article  CAS  Google Scholar 

  14. M. F. Jimenez-Solomon, J. Membr. Sci. 448, 102 (2013).

    Article  CAS  Google Scholar 

  15. K. Jewrajka and A. V. R. Reddy, J. Membr. Sci. 439, 87 (2013).

    Article  CAS  Google Scholar 

  16. B. Barona and J. B. Lim, Desalination 291, 69 (2012).

    Article  CAS  Google Scholar 

  17. A. Soroush and J. Barzin, Desalination 287, 310 (2012).

    Article  CAS  Google Scholar 

  18. P. S. Singh, A. P. Rao, P. Ray, et al., Desalination 282, 78 (2011).

    Article  CAS  Google Scholar 

  19. X. Fan, Y. Dong, Y. Su, et al., J. Membr. Sci. 452, 90 (2014).

    Article  CAS  Google Scholar 

  20. Sokolov, L.B., Polycondensation Synthesis of Polymers (Khimiya, Moscow, 1966) [in Russian].

    Google Scholar 

  21. H. Kim, K. Lee, and H. Kim, Desalination 336, 24 (2014).

    Article  CAS  Google Scholar 

  22. E. S. Pikutskaya and A. V. Bil’dyukevich, Vesti NAN Belarusi, Ser. Khim. Nauk, No. 2, 86 (2014).

    Google Scholar 

  23. A. R. Roudman and F. A. DiGiano, J. Membr. Sci. 175, 62 (2000).

    Article  Google Scholar 

  24. A. Fitzgibbon, M. Pilu, and R. B. Fisher, Desalination 21, 476 (1999).

    Google Scholar 

  25. S. A. Pratsenko and M. A. Movchanskii, Mater., Tekhnol., Instrum. 3, 134 (1998).

    Google Scholar 

  26. A. W. Mohammad, N. Hilalb, and M. N. Semana, Desalination 158, 73 (2003).

    Article  CAS  Google Scholar 

  27. I. J. Roh, J.-J. Kim, and S. Y. Park, J. Membr. Sci. 197, 199 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Liubimova.

Additional information

Original Russian Text © E.S. Liubimova, A.V. Bildyukevich, G.B. Melnikova, V.V. Volkov, 2015, published in Membrany i Membrannye Tekhnologii, 2015, Vol. 5, No. 4, pp. 282–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liubimova, E.S., Bildyukevich, A.V., Melnikova, G.B. et al. Modification of hollow fiber ultrafiltration membranes by interfacial polycondensation: Monomer ratio effect. Pet. Chem. 55, 795–802 (2015). https://doi.org/10.1134/S0965544115100138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115100138

Keywords

Navigation