Skip to main content
Log in

Ion Transport in sulfuric acid solution through anisotropic composites based on heterogeneous membranes and polyaniline

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Anisotropic composites based on heterogeneous ion-exchange membranes MK-40 and polyaniline have been prepared in a constant electric field. The diffusion and electric conduction properties of these materials in sulfuric acid solutions have been studied, and the diffusion permeability of the composites has been shown to decrease compared to the base membrane, with the conductivity remaining relatively unchanged. Investigation of mass transport of ions through the composite membranes during electrodialytic demineralization of sulfuric acid solutions has revealed that the performance of such materials in high-intensity current modes is higher than that of the base MK-40 membranes. In particular, the energy consumption for demineralization of sulfuric acid solutions is reduced by 40–60% and the current efficiency increases approximately twofold under certain conditions. The mass transfer and energy characteristics of the electrodialysis process have been found to depend on the orientation of the modified layer of the composite membranes with respect to the counterion flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Yaroslavtsev, Membranes and Membrane Technologies (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  2. V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Ross. Nanotekhnol. 3 (11/12), 67 (2008).

    Google Scholar 

  3. D. C. Buzzi, L. S. Viegas, M. A. Siqueira Rodrigues, et al., Miner. Eng. 40, 82 (2013).

    Article  CAS  Google Scholar 

  4. M. C. Martí-Calatayud, D. C. Buzzi, M. Garc'iaGabalón, et al., Desalination 343, 120 (2014).

    Article  Google Scholar 

  5. A. B. Yaroslavtsev and V. V. Nikonenko, Ross. Nanotekhnol. 4 (3/4), 8 (2009).

    Google Scholar 

  6. Zh. A. Boeva and V. G. Sergeyev, Polym. Sci., Ser. C 56, 144 (2014).

    Article  CAS  Google Scholar 

  7. I. Yu. Sapurina and Ya. Steiskal, Usp. Khim. 79, 1218 (2010).

    Google Scholar 

  8. A. B. Yaroslavtsev, Polym. Sci., Ser. A 55, 674 (2013).

    Article  CAS  Google Scholar 

  9. P. A. Yurova, Yu. A. Karavanova, and A. B. Yaroslavtsev, Pet. Chem. 52, 593 (2012).

    Article  CAS  Google Scholar 

  10. R. K. Nagarale, G. S. Gohil, K. Shahi Vinod, et al., J. Colloid Interface Sci. 277, 162 (2004).

    Article  CAS  Google Scholar 

  11. P. A. Yurova, Yu. A. Karavanova, Yu. G. Gorbunova, and A. B. Yaroslavtsev, Pet. Chem. 54, 551 (2014).

    Article  CAS  Google Scholar 

  12. S. M. Hosseini, F. Jeddi, M. Nemati, et al., Desalination 341, 107 (2014).

    Article  CAS  Google Scholar 

  13. B. Schwenzer, S. Kim, M. Vijayakumar, et al., J. Membr. Sci. 372, 11 (2011).

    Article  CAS  Google Scholar 

  14. S. A. Novikova, E. Yu. Safronova, A. A. Lysova, and A. B. Yaroslavtsev, Mendeleev Commun. 20, 156 (2010).

    Article  CAS  Google Scholar 

  15. N. P. Berezina, N. A. Kononenko, A. A.-R. Sytcheva, et al., Electrochim. Acta 54, 2342 (2009).

    Article  CAS  Google Scholar 

  16. S. Tan and D. Belanger, J. Phys. Chem. B 109, 23480 (2005).

    Article  CAS  Google Scholar 

  17. N. P. Berezina, N. A. Kononenko, A. N. Filippov, et al., Russ. J. Electrochem. 46, 485 (2010).

    Article  CAS  Google Scholar 

  18. K. V. Protasov, S. A. Shkirskaya, N. P. Berezina, and V. I. Zabolotskii, Russ. J. Electrochem. 46, 1131 (2010).

    Article  CAS  Google Scholar 

  19. L. V. Karpenko, O. A. Demina, G. A. Dvorkina, et al., Russ. J. Electrochem. 37, 287 (2001).

    Article  CAS  Google Scholar 

  20. O. A. Demina, N. P. Berezina, T. Sata, and A. V. Demin, Russ. J. Electrochem. 38, 896 (2002).

    Article  CAS  Google Scholar 

  21. V. I. Zabolotsky, N. D. Pismenskaya, E. V. Lactionov, and V. V. Nikonenko, Desalination 107, 245 (1996).

    Article  CAS  Google Scholar 

  22. E. V. Laktionov, N. D. Pismenskaya, V. V. Nikonenko, and V. I. Zabolotsky, Desalination 151, 101 (2002).

    Article  Google Scholar 

  23. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Demina, J. Membr. Sci. 243, 301 (2004).

    Article  CAS  Google Scholar 

  24. N. Berezina, I. Falina, A. Sytcheva, et al., Desalin. Water Treatment 14, 246 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kononenko.

Additional information

Original Russian Text © N.V. Loza, S.A. Loza, N.A. Kononenko, A.V. Magalyanov, 2015, published in Membrany i Membrannye Tekhnologii, 2015, Vol. 5, No. 3, pp. 202–207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loza, N.V., Loza, S.A., Kononenko, N.A. et al. Ion Transport in sulfuric acid solution through anisotropic composites based on heterogeneous membranes and polyaniline. Pet. Chem. 55, 724–729 (2015). https://doi.org/10.1134/S0965544115090054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115090054

Keywords

Navigation