Skip to main content
Log in

Application of cellophane films as nanofiltration membranes

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The prospects for use of commercially produced cellophane as a membrane material for organic solvent nanofiltration have been studied. The effect of cellophane film conditioning with aqueous ethanol mixtures with a gradually varying concentration (from ethanol to water and from water to ethanol) has been examined. It has been shown that such treatment increases the ethanol permeability by more than two orders of magnitude in comparison with the untreated sample. The obtained value of the ethanol permeability coefficient for the treated cellophane is comparable with that for highly permeable glassy polymers. The study of cellophane swelling in aqueous ethanol solutions has revealed that the formation of porous structure takes place during the cellophane treatment process as a result of an increase of the interchain distances in the film. The observed high permeability of ethanol is associated with the fact that the porous structure formed is preserved when water is replaced by ethanol. The main factors affecting the membrane flux are the viscosity of the liquid and degree of cellophane swelling in this liquid. It has been also shown that the rejection coefficients of some dyes with molecular mass in the range of 350 to 626 Da from ethanol agree well with the hydrophobicity/hydrophilicity of the solutes. The rejection coefficients of anionic dyes in the case of water are significantly higher than in ethanol (R(EtOH) = 55% → R(H2O) = 97% for Orange II and \(R_{EtOH} = 79\% \to R_{H_2 O} = 100\%\) for Remazol Brilliant Blue R) despite the higher swelling degree of cellophane in water. This behavior is explained by the increase of the solvation shell of the solute molecules and narrowing of the transport channels, in good agreement with the assumption of the sieving mechanism of separation by nanofiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. P. Nunes and K. V. Peinemann, Membrane Technology in the Chemical Industry (Wiley–VCH, Weinheim, 2006).

    Book  Google Scholar 

  2. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2004), 2nd Ed.

    Book  Google Scholar 

  3. A. V. Volkov, G. A. Korneeva, and G. F. Tereshchenko, Usp. Khim. 77, 1053 (2008).

    Article  Google Scholar 

  4. P. Marchetti, M. F. Jimenez Solomon, G. Szekely, and A. G. Livingston, Chem. Rev. 114, 10735 (2014).

    Article  CAS  Google Scholar 

  5. M. G. Buonomennaa and J. Baeb, Sep. Purif. Rev. 44, 157 (2015).

    Article  Google Scholar 

  6. C. Abels, F. Carstensen, and M. Wessling, J. Membr. Sci. 444, 285 (2013).

    Article  CAS  Google Scholar 

  7. M. L. Gerardo, D. L. Oatley-Radcliffe, and R. W. Lovitt, J. Membr. Sci. 464, 86 (2014).

    Article  CAS  Google Scholar 

  8. X. Q. Cheng, Y. L. Zhang, Z. X. Wang, et al., Adv. Polym. Technol. (2014). doi: 10.1002/adv.21455

    Google Scholar 

  9. X. M. Jie, Y. M. Cao, B. Lin, and Q. Yuan, J. Appl. Polym. Sci. 91, 1873 (2004).

    Article  CAS  Google Scholar 

  10. J. Cho, G. Amy, and J. Pellegrino, J. Membr. Sci. 164, 89 (2000).

    Article  CAS  Google Scholar 

  11. X. Xiong, J. Duan, W. Zou, et al., J. Membr. Sci. 363, 96 (2010).

    Article  CAS  Google Scholar 

  12. L. Golova, I. Makarov, L. Kuznetsova, et al., Cellulose: Fundamental Aspects, Ed. by T. van de Ven and L. Godbout (InTech, Rijeka, 2013).

  13. KOWWIN Version 1.68. http://www.epa.gov/opptintr/exposure/pubs/episuite.htm

  14. S. E. Tsar’kov, A. O. Malakhov, E. G. Litvinova, and A. V. Volkov, Pet. Chem. 53, 537 (2013).

    Article  Google Scholar 

  15. S. Tsarkov, V. Khotimskiy, P. M. Budd, et al., J. Membr. Sci. 423/424, 65 (2012).

    Article  Google Scholar 

  16. L. E. M. Gevers, I. F. J. Vankelecom, and P. A. Jacobs, J. Membr. Sci. 278, 199 (2006).

    Article  CAS  Google Scholar 

  17. Y. H. Toh, F. W. Limb, and A. G. Livingston, J. Membr. Sci. 301, 3 (2007).

    Article  CAS  Google Scholar 

  18. E. M. Tsui and M. Cheryan, J. Membr. Sci. 237, 61 (2004).

    Article  CAS  Google Scholar 

  19. B. van der Bruggen, J. Geens, and C. Vandecasteele, Sep. Sci. Technol. 37, 783 (2002).

    Article  Google Scholar 

  20. S. Darvishmanesh, J. Degrève, and B. van der Bruggen, Phys. Chem. Chem. Phys. 12, 13333 (2010).

    Article  CAS  Google Scholar 

  21. MOPAC. www.openmopac.net.

  22. T. Hori, M. Mizuno, and T. Shirnizu, Colloid Polym. Sci. 258, 1070 (1980).

    Article  CAS  Google Scholar 

  23. X. J. Yang, A. G. Livingston, and L. Freitas dos Santos, J. Membr. Sci. 190, 45 (2001).

    Article  CAS  Google Scholar 

  24. L. E. M. Gevers, G. Meyen, K. de Smeta, et al., J. Membr. Sci. 274, 173 (2006).

    Article  CAS  Google Scholar 

  25. C. Bellona, J. E. Drewes, P. Xua, and G. Amy, Water Res. 38, 2795 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkov.

Additional information

Original Russian Text © A.A. Yushkin, T.S. Anokhina, A.V. Volkov, 2015, published in Membrany i Membrannye Tekhnologii, 2015, Vol. 5, No. 3, pp. 226–233.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkin, A.A., Anokhina, T.S. & Volkov, A.V. Application of cellophane films as nanofiltration membranes. Pet. Chem. 55, 746–752 (2015). https://doi.org/10.1134/S0965544115050114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115050114

Keywords

Navigation