Skip to main content
Log in

Membrane gas separation progresses for process intensification strategy in the petrochemical industry

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The focus of this paper is on the progresses in membrane gas separation technology applied in the oil refining and petrochemical sector. Industrial applications, research trends on new materials and technical solutions, challenges and possible applications will be discussed. Other membrane operations will be briefly addressed, owing to their increasing number of installed systems in the refinery/petrochemical industry. This paper outlines how implementation of membrane technology in refineries and in the petrochemical industry result in Process Intensification (e.g., reduced footprint, better material utilization, reduced energy, reduced utilities and waste).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. J. Koros, J. Membr. Sci. 300, 1 (2007).

    Article  CAS  Google Scholar 

  2. S. Muraleedaaran, X. Li, L. Li, and R. Lee, “Is Reverse Osmosis Effective for Produced Water Purification? Viability and Economic Analysis”, in SPE Western Regional Meeting, San Jose, California (USA), 2009.

  3. O. Lefebvre and R. Moletta, Water Res. 40, 3671 (2006).

    Article  CAS  Google Scholar 

  4. L. Lin, Y. Zhang, and Y. Cong, Fuel 88/10, 1799 (2009).

    Article  CAS  Google Scholar 

  5. L. S. White, J. Membr. Sci. 286, 26 (2006).

    Article  CAS  Google Scholar 

  6. P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, Chem. Soc. Rev. 37, 365 (2008).

    Article  CAS  Google Scholar 

  7. S.-H. Yeon, K.-S. Lee, B. Sea, Y.-I. Park, and K.-H. Lee, J. Membr. Sci. 257, 156 (2005).

    Article  CAS  Google Scholar 

  8. V. M. Gryaznov and N. V. Orekhova, in Structured Catalysts and Reactors, Ed. by A. Cybulski and J. A. Moulijin (Marcel Dekker Inc., New York, 1998), pp. 435–461.

    Google Scholar 

  9. Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, and K. Kobayashi, Int. J. Hydrogen En. 34, 4482 (2009).

    Article  CAS  Google Scholar 

  10. P. Bernardo, G. Barbieri, and E. Drioli, Chem. Eng. Sci. 65, 1159 (2010).

    Article  CAS  Google Scholar 

  11. P. Bernardo, A. Criscuoli, G. Clarizia, G. Barbieri, E. Drioli, G. Fleres, and M. Picciotti, Clean Tech. Environ. Policy 6/2, 78 (2004).

    Article  CAS  Google Scholar 

  12. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48/10, 4638 (2009).

    Article  CAS  Google Scholar 

  13. www.airproducts.no.

  14. R.W. Baker, Membrane Technology and Applications (J. Wiley, England, 2004), Chapter 8.

    Book  Google Scholar 

  15. Project INCO Copernicus, “Gasification of Low Quality Coals in Fluidized Bed: a Novel Process of Controlled Injection of Oxygen Enriched Air Obtained by Means of Gas Separating Membranes” (MEGA), 1998–2001.

  16. A. A. Belyaev, Yu. P. Yampolskii, L. E. Starannikova, A. M. Polyakov, G. Clarizia, E. Drioli, G. Marigliano, and G. Barbieri, Fuel Processing Technol. 80(2), 119 (2003).

    Article  CAS  Google Scholar 

  17. S. L. Matson, W. J. Ward, S. G. Kimure, and W. R. Browall, J. Membr. Sci. 29, 79 (1986).

    Article  Google Scholar 

  18. B. D. Bhide and S. A. Stern, J. Membr. Sci. 62, 13 (1991).

    Article  CAS  Google Scholar 

  19. P. S. Puri, “Membranes for Gas Separation: Current Status”, in Ecological Applications of Innovative Membrane Technology in the Chemical Industry, Cetraro (Italy), 1996.

  20. L. Pillier, S. de Persis, G. Cabot, R. Bounaceur, Y. Liu, M. Boukhalfa, J. M. Most, I. Gokalp, and E. Favre, “Coupling of Oxygen-Enriched Combustion and CO2 Capture by Membrane Processes”, in Fourth European Combustion Meeting (ECM), Vienna (Austria), 2009.

  21. “Air Liquide to Install ASU for Dongbei Special Steel Group”, China Chemical Reporter, 2007.

  22. S. Liu and G. Gavalas, J. Membr. Sci. 246, 103 (2005).

    Article  CAS  Google Scholar 

  23. X. Tan, Z. Pang, and K. Li, J. Membr. Sci. 310, 550 (2008).

    Article  CAS  Google Scholar 

  24. P. A. Armstrong, D. L. Bennett, E. P. Foster, and E. E. Stein, “ITM Oxygen: The New Oxygen Supply for the New IGCC Market”, in Gasification Technologies 2005, San Francisco, California (U.S.A.), 2005.

  25. R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).

    Article  CAS  Google Scholar 

  26. R. Spillman, Chem. Eng. Prog. 41 (1989).

  27. R. A. Hayes, (Du Pont), US Patent No. 4 880 442 (1989).

  28. Y. Kusuki, T. Yoshinaga, and H. Shimazaki, (Ube), US Patent No. 5 141 642 (1992).

  29. S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 338, 1 (2009).

    Article  CAS  Google Scholar 

  30. R. W. Baker and K. Lokhandwala, Ind. Eng. Chem. Res. 47, 2109 (2008).

    Google Scholar 

  31. www.natcogroup.com.

  32. D. Dortmundt and K. Doshi, “Recent Developments in CO2 Removal Membrane Technology”, UOP LLC, Des Plaines, Illinois, 1999.

    Google Scholar 

  33. K. Matsumoto and P. Xu, J. Appl. Polym. Sci. 47, 1961 (1993).

    Article  CAS  Google Scholar 

  34. J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, Ind. Eng. Chem. Res. 41, 6139 (2002).

    Article  CAS  Google Scholar 

  35. C. Staudt-Bickel and W. J. Koros, J. Membr. Sci. 155, 145 (1999).

    Article  CAS  Google Scholar 

  36. www.ube.com.

  37. www.medal.airliquide.com.

  38. www.mtrinc.com.

  39. K. A. Lokhandwala, I. Pinnau, Z. He, K. D. Amo, A. R. DaCosta, J. G. Wijmans, and R. W. Baker, J. Membr. Sci. 346, 270 (2010).

    Article  CAS  Google Scholar 

  40. T. Merkel, H. Lin, S. Thompson, R. Daniels, A. Serbanescu, and R. W. Baker, “A Membrane Process to Capture CO2 from Power Plant Flue Gas”, in International Conference on Membranes and Membrane Processes (ICOM2008), Honolulu (HI, USA), 2008, p. 275.

  41. EU FP7 project DoubleNanoMem—“Nanocomposite and Nanostructured Polymeric Membranes for Gas and Vapour Separations”—NMP3-SL-2009-228631, http://www.itm.cnr.it/data/DoubleNanoMem.

  42. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, and B. D. Freeman, D.J. Science 318/5848, 254 (2007).

    CAS  Google Scholar 

  43. www.sciencedaily.com/releases/2007/10/071011142625.htm.

  44. J. C. Jansen, M. G. Buonomenna, A. Figoli, and E. Drioli, J. Membr. Sci. 272, 188 (2006).

    Article  CAS  Google Scholar 

  45. J. C. Jansen, M. Macchione, and E. Drioli, J. Membr. Sci. 255, 167 (2005).

    Article  CAS  Google Scholar 

  46. T. C. Merkel, I. Pinnau, R. Prabhakar, and B. D. Freeman, “Gas and vapor Transport Properties of Perfluoropolymers”, in Materials Science of Membranes for Gas and Vapor separation, Ed. by Yu. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley: Chichester (UK), 2006), pp. 251–270.

    Chapter  Google Scholar 

  47. I. Pinnau, Z. He, A. R. da Costa, K. D. Amo, and R. Daniels, US Patent No. 6 361 582 (2002).

  48. I. Pinnau, Z. He, A. R. da Costa, K. D. Amo, and R. Daniels, US Patent No. 6 361 583 (2002).

  49. V. Arcella, P. Colaianna, P. Maccone, A. Sanguineti, A. Gordano, G. Clarizia, and E. Drioli, J. Membr. Sci. 163, 203 (1999).

    Article  CAS  Google Scholar 

  50. R. S. Prabhakar, B. D. Freeman, and I. Roman, Macromolecules 37, 7688 (2004).

    Article  CAS  Google Scholar 

  51. N. B. McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K.J. Reynolds, and D. Fritsch, Chem. Eur. J. 11, 2610 (2005).

    Article  CAS  Google Scholar 

  52. L. M. Robeson, J. Membr. Sci. 62, 165 (1991).

    Article  CAS  Google Scholar 

  53. L. M. Robeson, J. Membr. Sci. 320, 390 (2008).

    Article  CAS  Google Scholar 

  54. K. Ohlrogge and K. Stürken, “The Separation of Organic Vapors from Gas Streams by Means of Membranes, in Membrane Technology in the chemical Industry, Part II: Current Application and Perspectives, Ed. by S. P. Nunes and V. Peinemann (Wiley-VCH, Veinheim, 2001), pp. 93–118.

    Google Scholar 

  55. R. W. Baker, J. G. Wijmans, and J. H. Kaschemekat, J. Membr. Sci. 151, 55 (1998).

    Article  CAS  Google Scholar 

  56. Z. He, I. Pinnau, and A. Morisato, Desalination 146, 11 (2002).

    Article  CAS  Google Scholar 

  57. S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 333, 125 (2009).

    Article  CAS  Google Scholar 

  58. S. W. Kang, J. H. Kim, K. Char, J. Won, and Y. S. Kang, J. Membr. Sci. 285, 102 (2006).

    Article  CAS  Google Scholar 

  59. J. H. Kim, D. H. J. Won, H. Jinnai, and Y. S. Kang, J. Membr. Sci. 281, 369 (2006).

    Article  CAS  Google Scholar 

  60. J. Caro, M. Noack, and P. Kolsch, Adsorption 11, 2215 (2005).

    Article  Google Scholar 

  61. T. Arnot, “Aerobic Membrane Bioreactor Technology”, in ProMembrane Conference, Sfax (Tunisia), 2008.

  62. “Liquid and Gas Separation Membranes Market Set for Solid Growth”, Membrane Technol. 4, 3 (2009).

  63. W. J. Koros and R. Mahajan, Polym. Eng. Sci. 42, 1420 (2002).

    Article  Google Scholar 

  64. G. Clarizia, C. Algieri, and E. Drioli, Polymer 45, 5671 (2004).

    Article  CAS  Google Scholar 

  65. M. Woo, J. Choi, and M. Tsapatsis, Micropor. Mesopor. Mater. 110, 330 (2008).

    Article  CAS  Google Scholar 

  66. “UBE Expands Gas Separation Membrane Production”, Membrane Technol. 11, 4 (2006).

    Google Scholar 

  67. U. Shanbhag, E. S. Sanders, S. S. Kulkarni, I. C. Roman, T. Li, O. M. Ekiner, C. Anderson, S. Karode, and C. Kim, “Gas Separation Membranes at Air Liquide/Medal”, in The 2008 Annual Meeting, Philadelphia, PA (USA), 2008.

  68. www.airproducts.com.

  69. R. M. Kelly, (Cynara), US Patent No. 4 659 343 (1987).

  70. A. Callison and G. Davidson, Oil Gas J. (2007).

  71. www.natcogroup.com.

  72. R. Baker, in Membrane Operations, Ed. by E. Drioli and L. Giorno (Wiley-VCH, 2009), Chap. 8, pp. 167–194.

  73. Y. Huang and D. R. Paul, Polymer 45, 8377 (2005).

    Article  Google Scholar 

  74. U. Razdan, S. V. Joshi, and V. J. Shah, Curr. Sci. 6, 761 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardo, P., Drioli, E. Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Pet. Chem. 50, 271–282 (2010). https://doi.org/10.1134/S0965544110040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544110040043

Keywords

Navigation