Skip to main content
Log in

Three-dimensional simulation of the runup of nonlinear surface gravity waves

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The runup of nonlinear surface gravity waves is numerically simulated in two and three dimensions on the basis of the Navier-Stokes equations. The three-dimensional problem is formulated, and the boundary and initial conditions are described. The splitting method over physical processes is used to construct a discrete model taking into account the cell occupation coefficient. The runup of nonlinear surface gravity waves is simulated in two dimensions for slopes of various geometries, and the numerical results are analyzed. The structural features of the simulated three-dimensional basin are described. Three-dimensional models for the staged runup of nonlinear surface gravity waves breaking on coastal slopes in shallow water areas are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Watanabe and H. Saeki, “Three dimensional large eddy simulation of breaking waves,” Coast. Eng. J. 41, 281–301 (1999); doi: 10.1142/S0578563499000176.

    Article  Google Scholar 

  2. P. Lubin, S. Vincent, S. Abadie, and J.-P. Caltagirone, “Three-dimensional large eddy simulation of air entrainment under plunging breaking waves,” Coastal Eng. J. 53, 631–655 (2006).

    Article  Google Scholar 

  3. Z. I. Fedotova, “Justification of a numerical method for the simulation of long-wave runup,” Vychisl. Tekhnol. 7(5), 58–76 (2002).

    MATH  MathSciNet  Google Scholar 

  4. N. M. Borisova, “On modeling of hydraulic bore propagation at incline bank,” Sib. Zh. Vychisl. Mat. 10(1), 1–18 (2007).

    Google Scholar 

  5. A. I. Delis, M. Kazolea, and N. A. Kampanis, “A robust high resolution finite volume scheme for the simulation of long waves over complex domains,” Int. J. Numer. Methods Fluids 56, 419–452 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. C. K. Ting and J. T. Kirby, “Dynamics of surf-zone turbulence in a spilling breaker,” Coastal Eng 27, 131–160 (1996); doi: 10.1016/0378-3839(95)00037-2.

    Article  Google Scholar 

  7. O. Kimmoun and H. Branger, “A PIV investigation on laboratory surf-zone breaking waves over a sloping beach,” J. Fluid Mech. 588, 353–397 (2007).

    MATH  MathSciNet  Google Scholar 

  8. I. B. Abbasov, “Numerical simulation of nonlinear surface gravity waves transformation under shallow-water conditions,” Appl. Math. 3(2), 135–141 (2012); doi: 10.4236/am.2012.32021.

    Article  MathSciNet  Google Scholar 

  9. I. B. Abbasov, A. I. Sukhinov, and A. E. Chistyakov, “Numerical simulation of the runup of nonlinear surface gravity waves based on the Navier-Stokes equation,” Proceedings of the 14th All-Russia Conference-School on Modern Problem in Mathematical Simulation, Abrau-Dyurso, September 12–17, 2011 (Yuzhn. Fed. Univ., Rostov-on-Don, 2011), pp. 10–15.

    Google Scholar 

  10. I. B. Abbasov, I. S. Semenov, and V. V. Tsarevskii, “Numerical simulation of the runup of nonlinear surface gravity waves on a gently sloping beach,” Izv. Yuzhn. Fed. Univ. Tekh. Nauki, No. 6, 19–22 (2012).

    Google Scholar 

  11. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976; Mir, Moscow, 1980).

    Google Scholar 

  12. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991), Vol. 2.

    Google Scholar 

  13. F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids 8, 2182–2189 (1965).

    Article  MATH  Google Scholar 

  14. O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, “The splitting method for investigating flows of a stratified liquid with a free surface,” USSR Comput. Math. Math. Phys. 27(2), 181–191 (1987).

    Article  MathSciNet  Google Scholar 

  15. A. I. Sukhinov, E. F. Timofeeva, and A. E. Chistyakov, “Construction and investigation of a discrete mathematical model for computing coastal wave processes,” Izv. Yuzhn. Fed. Univ. Tekh. Nauki 121(8), 22–32 (2011).

    Google Scholar 

  16. A. A. Samarskii, Introduction to Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  17. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (BINOM, Moscow, 2006) [in Russian].

    Google Scholar 

  18. I. B. Abbasov, I. S. Semenov, and V. V. Tsarevskii, “Code for three-dimensional simulation of surface wave runup in a shallow bay,” Russian Federation Inventor’s Certificate No. 2012617087, 2012.

    Google Scholar 

  19. I. B. Abbasov, I. S. Semenov, and V. V. Tsarevskii, “Code for two-dimensional simulation of surface wave runup in a shallow bay,” Russian Federation Inventor’s Certificate No. 2012616206, 2012.

    Google Scholar 

  20. USSR Seas Project: Hydrometeorology and Hydrochemistry of USSR Seas, Vol. 5: Sea of Azov, Ed. by N. P. Goptarev et al. (Gidrometeoizdat, St. Petersburg, 1991), pp. 75–88 [in Russian].

    Google Scholar 

  21. V. A. Mamykina and Yu. P. Khrustalev, Coastline Zone of the Sea of Azov (Rostov. Gos. Univ., Rostov-on-Don, 1980) [in Russian].

    Google Scholar 

  22. V. K. Debol’skii, R. Zaidler, and S. Massel’, Dynamics of Channel Flows and Nearshore Lithodynamics (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  23. Q. Zhao, S. Armfield, and K. Tanimoto, “Numerical simulation of breaking waves by a multiscale turbulence model,” Coastal Eng. J. 51, 53–80 (2004).

    Article  Google Scholar 

  24. I. B. Abbasov, “Modeling of nonlinear surface gravity waves in shallow water with regard to dispersion,” Dokl. Earth Sci. 429, 1605–1607 (2009).

    Article  Google Scholar 

  25. Building Code No. 33-01-2003: Hydraulic Facilities (Gosstroi Rossii, Moscow, 2004) [in Russian].

  26. T. G. Smirnova, Yu. P. Pravdivets, and G. N. Smirnov, Bank Protection Facilities (ASV, Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Abbasov.

Additional information

Original Russian Text © I.B. Abbasov, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 5, pp. 871–886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasov, I.B. Three-dimensional simulation of the runup of nonlinear surface gravity waves. Comput. Math. and Math. Phys. 54, 900–914 (2014). https://doi.org/10.1134/S0965542514050030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514050030

Keywords

Navigation