Skip to main content
Log in

Composition and conditions of formation of the parental melts of Jurassic dolerites of southwestern Crimea: Evidence from melt inclusions in olivine phenocrysts

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This study focuses on Jurassic shallow intrusions and subvolcanic bodies from around Trudolyubovka village in the southwestern Crimea. All the rocks are similar in mineral composition and have similar geochemical features and occur in close spatial and geological association. This allows us to assign the intrusions to a single magmatic series and interpret them as differentiation products of a single parental melt. The investigation of melt inclusions in olivine from the most magnesian sample showed that the composition of igneous melts ranged from basalt to basaltic andesite of a moderately potassic subalkaline affinity. Compared with N-MORB, they are enriched in LILE, but have similar HFSE and REE contents. The early magmatic melts crystallized at temperatures ranging from 1240 to 1125°C, pressures of 6–8 kbar, and an oxygen fugacity of ΔQFM = +0.6; and later melts crystallized at 1090–940°C, ~1.5 kbar, and oxygen fugacity increasing from ΔQFM + 0.9 to ΔQFM + 2.3. The minimum pressure of groundmass crystallization was estimated as 40–60 bar. The primitive melts were formed in a mature island arc or an active continental margin setting by ~13% melting of a DMM-like source. The melting occurred at spinel-facies depths under the influence of a slab-derived fluid at a temperature 25°C below the dry peridotite solidus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeev, R.R., Holtz, F., Koepke, J., et al., The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa, Am. Mineral., 2007, vol. 92, no. 4, pp. 670–674.

    Article  Google Scholar 

  2. Arai, S, Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation, Chem. Geol., 1994, vol. 113, no. 3, pp. 191–204.

    Article  Google Scholar 

  3. Ariskin, A.A., Frenkel, M.Y., Barmina, G.S., and Nielsen, R.L., COMAGMAT: a FORTRAN program to model magma differentiation processes, Comput. Geosci., 1993, vol. 19, no. 8, pp. 1155–1170.

    Article  Google Scholar 

  4. Bagdasaryan, G.P. and Lebedinskii, V.I, New data on the absolute age of magmatic rocks of Gorny Crimea, Dokl. Akad. Nauk SSSR, 1967, vol. 173, no. 1, pp. 149–152.

    Google Scholar 

  5. Ballhaus, C., Berry, R.F., and Green, D.H, High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, no. 1, pp. 27–40.

    Article  Google Scholar 

  6. Borisov, A.A. and Shapkin, A.I., A new empirical equation relating Fe3+ /Fe2+ in magmas to their composition, oxygen fugacity, and temperature, Geochem. Int., 1990, vol. 27, no. 1, pp. 111–116.

    Google Scholar 

  7. Bucholz, C.E., Gaetani, G.A., Behn, M.D., et al., Postentrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 145–155.

    Article  Google Scholar 

  8. Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem. Geophys. Geosyst., 2011, vol. 12, Q07021, doi 10.1029/2011GC003516

    Article  Google Scholar 

  9. Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 138, no. 1, pp. 68–83.

    Article  Google Scholar 

  10. Danyushevsky, L.V., Sokolov, S., and Falloon, T.J, Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks, J. Petrol., 2002, vol. 43, no. 9, pp. 1651–1671.

    Google Scholar 

  11. Dovgal’, Yu.M., Radzivil V.Ya., Tokovenko, V.S., et al., Vulkany Karadag (Volkanoes of Karadag), Kiev: Naukova dumka, 1991.

    Google Scholar 

  12. Fedorchuk A.V. and Glukhov, A.M, Petrographic types of subvolcanic bodies of the Bodrak River valley and their age, in Region. Geol. Nekot. Reg. SSSR, 1980, no. 4, pp. 39–45.

    Google Scholar 

  13. Feig, S., Koepke, J., and Snow, J, Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions, Contrib. Mineral. Petrol., 2006, vol. 152, no. 5, pp. 611–638.

    Article  Google Scholar 

  14. Ford, C.E., Russell, D.G., Craven, J.A., and Fisk, M.R, Olivine–liquid equilibria: temperature,pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg,Fe2+,Ca and Mn, J. Petrol., 1983, vol. 24, no. 3, pp. 256–266.

    Article  Google Scholar 

  15. Gavrilenko, M., Herzberg, C., Vidito, C., et al., A calciumin-olivine geohygrometer and its application to subduction zone magmatism, J. Petrol., 2016, vol. 57, no. 9, pp. 1811–1832.

    Google Scholar 

  16. Genç, S.C. and Tüysüz, O, Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides), Northern Turkey: a geochemical and isotopic approach, Lithos, 2010, vol. 118, no. 1, pp. 95–111.

    Google Scholar 

  17. Gill, J., Orogenic Andesites and Plate Tectonics, Berlin: Springer-Verlag, 1981.

    Book  Google Scholar 

  18. Ginibre, C., Kronz, A., and Wörner, G., High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning, Contrib. Mineral. Petrol., 2002, vol. 142, no. 4, pp. 436–448.

    Article  Google Scholar 

  19. Gnidets, V.P., Grigorchuk, K.G., Zakharchuk, S.M., et al., Neftegazoperspectivnyi ob’ekty Ukrainy. Geologiya nichnego mela Prichernomorsko–Krymskoi neftegazonosnoi oblasti (geologostrukturnyi usloviya, sediment-litogenezis, porody kollektory, perspektivy neftegazonosnosti) (Oil and Gas Prospects of Ukraine. Geology of the Lower Cretaceous of the Black Sea–Crymean Petroleum Area: Geological-Structural Conditions, Sedimentation, Lithogenesis, Reservoir Rocks, and Petroleum Prospects), Kiev: EKMO, 2010.

    Google Scholar 

  20. Ionov, D.A., Benard, A., and Plechov, P.Y, Melt evolution in subarc mantle: evidence from heating experiments on spinel- hosted melt inclusions in peridotite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia), Contrib. Mineral. Petrol., 2011, vol. 162, no. 6, pp. 1159–1174.

    Article  Google Scholar 

  21. Jaques, A.L. and Green, D.H, Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts, Contrib. Mineral. Petrol., 1980, vol. 73, no. 3, pp. 287–310.

    Article  Google Scholar 

  22. Jarosewich, E., Nelen, J.A., and Norberg, J.A, Reference samples for electron microprobe analysis, Geostand. Newslett., 1980, vol. 4, no. 1, pp. 43–47.

    Article  Google Scholar 

  23. Jochum, K.P. and Dingwell, D.B., Rocholl, A., et al., The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis, Geostand. Newslett., 2000, vol. 24, no. 1, pp. 87–133.

    Article  Google Scholar 

  24. Jochum, K.P., Willbold, M., Raczek, I., et al., Chemical characterisation of the USGS reference glasses GSA-1G,GSC-1G,GSD-1G,GSE-1G,BCR-2G,BHVO-2G and BIR-1G using EPMA,ID-TIMS,ID-ICP-MS and LAICP-MS, Geostand. Geoanal. Res., 2005, vol. 29, no. 3, pp. 285–302.

    Article  Google Scholar 

  25. Kopaevich, L.F. and Khotylev, A.O. The stratigraphic setting of Cretaceous volcanic rocks in Crimea and in the North Caucasus, Mosc. Univ. Geol. Bull., 2014, vol. 69, no. 6, pp. 433–444.

  26. Latyshev, A.V. and Panov, D.I, Jurassic magmatic bodies of Mountainous Crimea in the Bodrak River catchment (Southwestern Crimea), Mosc. Univ. Geol. Bull., 2008, vol. 63, no. 2, pp. 70–78.

    Article  Google Scholar 

  27. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., A chemical classification of volcanic-rocks based on the total alkali silica diagram, J. Petrol., 1986, vol. 27, no. 3, pp. 745–750.

    Article  Google Scholar 

  28. Lebedinskii, V.I. and Makarov, N.N., Vulkanizm Gornogo Kryma (Volcanism of Mountain Crimea), Kiev: AN USSR, 1962.

    Google Scholar 

  29. Lindsley, D.H, Pyroxene thermometry, Am. Mineral., 1983, vol. 68, nos. 5–6, pp. 477–493.

    Google Scholar 

  30. Loucks, R.R., A precise olivine–augite Mg–Fe-exchange geothermometer, Contrib. Mineral. Petrol., 1996, vol. 125, nos. 2–3, pp. 140–150.

    Article  Google Scholar 

  31. Luchitskii, V.I., Petrography of Crimea, in Regional’naya petrografiya (Regional Petrography), Moscow: AN SSSR,1939, vol. 8.

    Google Scholar 

  32. Mallmann, G. and O’Neill, H.S.C, Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc,Y and V between olivine and silicate melt, J. Petrol., 2013, vol. 54, no. 5, pp. 933–949.

    Article  Google Scholar 

  33. Meijers, M.J.M., Vrouwe, B., van Hinsbergen, D.J.J., et al., Jurassic arc volcanism on Crimea (Ukraine): implications for the paleo-subduction zone configuration of the Black Sea region, Lithos, 2010, vol. 119, no. 3, pp. 412–426.

    Article  Google Scholar 

  34. Morimoto, N, Nomenclature of pyroxenes, Mineral. Petrol., 1988, vol. 39, no. 1, pp. 55–76.

    Article  Google Scholar 

  35. Morozova E.B., Sergeev S.A., and Sufiev, A.A., U–Pb zircon (SHRIMP) ages of the Dzhidair Intrusin as reference object for Crimean geology (Crimean test site of St. Petersburg State University), Vestn. St. Peterb. Gos. Univ., Ser. 7, 2012, no. 4, pp. 25–33.

  36. Mudrenko, S.V., Pechnikov, V.A., and Samsonenko, V.L, Hypabyssal and subvolcanic rocks of the Bodrak–Salgir zone (piedmont Crimea), Regional. Geol. Nekot. Raion. SSSR, 1983, no. 6, pp. 18–23.

    Google Scholar 

  37. Muratov, M.V., Kratkii ocherk geologicheskogo stroeniya krymskogo poluostrova (Brief Essay on the Geological Structure of the Crimean Peninsula), Moscow: GONTI, 1960.

    Google Scholar 

  38. Newman, S. and Lowerstern, J.B, VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for Excel, Comput. Geosci., 2002, vol. 28, no. 5, pp. 597–604.

    Article  Google Scholar 

  39. Nikishin, A.M., Khotylev, A.O., Bychkov, A.Yu. et al., Cretaceous volcanic belts and the evolution of the Black Sea Basin, Mosc. Univ. Geol. Bull., 2013, vol. 68, no. 2, pp. 141–154.

    Article  Google Scholar 

  40. Nikitin, M.Yu. and Bolotnov, S.N., Geologicheskoe stroenie Krymskogo uchebnogo poligona MGU. Chast’ 2 (Geological Structure of the Krymean Test Site of the Moscow State University Part 2), Moscow: MGU, 2007.

    Google Scholar 

  41. Nikitina, M.I., Pol’skikh, G.M., and Suslov, A.V, Some features of minor intrusions in the Bodrak river basin (Bakhchisarai area, Crymea), Izv. Vyssh. Ucheb. Zaved. Geol. Razvedka, 1979, no. 6, pp. 39–43.

    Google Scholar 

  42. Nimis, P., A clinopyroxene geobarometer for basaltic systems based on crystal structure modeling, Contrib. Mineral. Petrol., 1995, vol. 121, no. 2, pp. 115–125.

    Article  Google Scholar 

  43. Okay, A.I. and Nikishin, A.M, Tectonic evolution of the southern margin of Laurasia in the Black Sea region, Int. Geol. Rev., 2015, vol. 57, nos. 5–8, pp. 1051–1076.

    Article  Google Scholar 

  44. Panov, D.I. and Stepanov, A.G, Lower Jurassic volcanogeic horizon on the Bodrak–Al’ma watershed (Mountainous Crimea) and its analogues in the Mountainous Crimea and Greater Caucasus, Vestn. Mosk. Univ., Geol., Ser. 4, 2002, no. 1, pp. 14–21.

    Google Scholar 

  45. Pearce, J.A., Role of the subcontinental lithosphere in magma genesis at active continental margins, in Continental Basalts and Mantle Xenoliths, Hawkesworth, C.J. and Norry, M.J., Eds., Cheshire: Shiva, 1983, pp. 230–249.

    Google Scholar 

  46. Plechov, P.Yu. and Popov D.V, The character of volcanic activity in southwestern Crimea during the Late Albian, Mosc. Univ. Geol. Bull., 2014, vol. 69, no. 5, pp. 299–307.

    Article  Google Scholar 

  47. Plechov, P., Blundy, J., Nekrylov, N., et al., Petrology and volatile content of magmas erupted from Tolbachik volcano,Kamchatka,2012–13, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 182–199.

    Article  Google Scholar 

  48. Popov D.V., Nekrylov N.A., Plechov P.Yu. The petrology of the Upper Albian tuffites from the Bakhchysarai district, southwestern Crimea, Mosc. Univ. Geol. Bull., 2016, vol. 71, no. 2, pp. 194–204.

    Article  Google Scholar 

  49. Portnyagin, M., Hoernle, K., Plechov, P., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O,S,Cl,F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sci. Lett., 2007, vol. 255, no. 1, pp. 53–69.

    Article  Google Scholar 

  50. Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F, Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sci. Lett, 2008, vol. 272, no. 3, pp. 541–552.

    Article  Google Scholar 

  51. Promyslova, M.Yu., Demina, L.I., Bychkov, A.Yu., et al., Ophiolitic association of Cape Fiolent area, Southwestern Crimea, Geotectonics, 2016, vol. 50, no. 1, pp. 21–34.

    Article  Google Scholar 

  52. Sen, C, Jurassic volcanism in the Eastern Pontides: is it rift related or subduction related?, Turk. J. Earth Sci., 2007, vol. 16, no. 4, pp. 523–539.

    Google Scholar 

  53. Shishkina, T.A., Botcharnikov, R.E., Holtz, F., et al., Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa, Chem. Geol., 2010, vol. 277, no. 1, pp. 115–125.

    Article  Google Scholar 

  54. Shnyukov E.F., Shcherbakov, I.B., Shnyukova, E.E., Paleoostrovnaya duga severa Chernogo morya (Paleoisland Arc of the Northern Black Sea), Kiev: NANU, 1997.

    Google Scholar 

  55. Simkin, T. and Smith, J.V., Minor-element distribution in olivine, J. Geol., 1970, pp. 304–325.

    Google Scholar 

  56. Sobolev, A.V. and Danyushevsky, L.V, Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas, J. Petrol., 1994, vol. 35, no. 5, pp. 1183–1211.

    Article  Google Scholar 

  57. Sobolev, A.V. and Slutskii, A.B, Composition and conditions of crystallization of the parental melt of the Siberian meymechites and relation with a general problem of ultrabasic magmas, Geol. Geofiz., 1984, no. 12, pp. 97–110.

    Google Scholar 

  58. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, no. 7596, pp. 628–632.

    Article  Google Scholar 

  59. Solov’ev, A.V. and Rogov, M.A, First fission-track dating of zircons from Mesozoic complexes of the Crimea, Stratigraphy. Geol. Correlation, 2010, vol. 18, no. 3, pp. 298–306.

    Article  Google Scholar 

  60. Spiridonov, E.M., Korotaeva, N.N., and Ladygin, V.M., Cr-spinel, Ti-magnetite, and ilmenite from island-arc volcanic rocks of Mountainous Crimea, Vestn. Mosk. Univ., Geol. Ser. 4, 1989, no. 6, pp. 37–55.

    Google Scholar 

  61. Spiridonov, E.M., Fedorov, T.O., and Ryakhovskii, V.M, Magmatic complexes of Mountainous Crimea: Paper 1, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1990a, vol. 65, no. 4, pp. 119–134.

    Google Scholar 

  62. Spiridonov, E.M., Fedorov, T.O., Ryakhovskii, V.M, Magmatic complexes of Mountainous Crimea: Paper 2, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1990b, vol. 65, no. 4, pp. 102–112.

    Google Scholar 

  63. Streck, M.J., Dungan, M.A., Bussy, F., and Malavassi, E, Mineral inventory of continuously erupting basaltic andesites at Arenal Volcano, Costa Rica: implications for interpreting monotonous, crystal-rich, mafic arc stratigraphies, J. Volcanol. Geotherm. Res., 2005, vol. 140, no. 1, pp. 133–155.

    Google Scholar 

  64. Sun, S.S. and McDonough, W.F, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Spec. Publ., 1989, vol. 42, no. 1, pp. 313–345.

    Article  Google Scholar 

  65. Sysolin A.I. and Pravikova N.V, Subvolcanic bodies of the Bodrak Complex in southwestern Crimea: structure, composition, and formation conditions, Mosk. Univ Geol. Bull., 2008, vol. 63, no. 2, pp. 79–85.

    Google Scholar 

  66. Wells, P.R.A, Pyroxene thermometry in simple and complex systems, Contrib. Mineral. Petrol., 1977, vol. 62, no. 2, pp. 129–139.

    Article  Google Scholar 

  67. Workman, R.K. and Hart, S.R, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 2005, vol. 231, no. 1, pp. 53–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Popov.

Additional information

Original Russian Text © D.V. Popov, N. Nekrylov, P.Yu. Plechov, V.D. Shcherbakov, M.V. Portnyagin, M.S. Serova, 2017, published in Petrologiya, 2017, Vol. 25, No. 3, pp. 265–298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, D.V., Nekrylov, N., Plechov, P.Y. et al. Composition and conditions of formation of the parental melts of Jurassic dolerites of southwestern Crimea: Evidence from melt inclusions in olivine phenocrysts. Petrology 25, 272–303 (2017). https://doi.org/10.1134/S0869591117030031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117030031

Navigation