Skip to main content
Log in

Mantle metasomatism and magma formation in continental lithosphere: Data on xenoliths in alkali basalts from the Makhtesh Ramon, Negev desert, Israel

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman, L., Spacek, P., Magna, T., et al., Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bohemian massif, J. Petrol., 2013, vol. 54, no. 12, pp. 2597–2633.

    Article  Google Scholar 

  • Al-Fugha, H. and Al-Amaireh, A., Petrology and origin of ultramafic xenoliths from North Eastern Jordan volcanoes, Am. J. Appl. Sci., 2007, vol. 4, pp. 491–495.

    Article  Google Scholar 

  • Al-Malabeh, A., Cryptic mantle metasomatism: evidences from spinel lherzolite xenoliths/Al Harida volcano in Harrat Al Shaam, Jordan, Am. J. Appl. Sci., 2009, vol. 6, no. 12, pp. 2085–2092.

    Article  Google Scholar 

  • Barth, T.F.W., Structure and volume relations of the alkali feldspar mixed crystals, Schweiz. Mineral. Petrogr. Mitt. Bd., vol. 47, no. 1, p. 127.

  • Bogatikov, O.A., Kosareva, L.V., and Sharkov, E.V., Srednie khimicheskie sostavy magmaticheskikh gornykh porod (Intermediate Chemical Compositions of Igneous Rocks), Moscow: Nedra, 1987.

    Google Scholar 

  • Bonen, D., The Mesozoic basalts of Israel. Ph. D. Scient. Thesis. Hebrev Univ. Jerusalem, 1980.

    Google Scholar 

  • Fershtater, G.B., Empirical plagioclase–hornblende barometer, Geokhimiya, 1990, no. 3, pp. 328–336.

    Google Scholar 

  • Fershtater, G.B., Paleozoiskii intruzivnyi magmatizm Srednego i Yuzhnogo Urala (Paleozoic Intrusive Magmatism of the Middle and South Urals), Yekaterinburg: Izd. UrO RAN, 2013.

    Google Scholar 

  • Fershtater, G.B., Yudalevich, Z.A., and Hiller, V.V., Xenoliths in the alkaline basaltoids of Makhtesh Ramona (Negev desert, Israel) as indicators of mantle metasomatism and magma formation, Litosfera, 2016, no. 3, pp. 5–26.

    Google Scholar 

  • Frey, F.A. and Prinz, M., Ultramafic inclusions from San Carlos, Arizona. Petrologic and geochemical data bearing on their petrogenesis, Earth Planet. Sci. Lett., 1978, vol. 38, pp. 1023–1054.

    Article  Google Scholar 

  • Henjes-Kunst, F., Altherr, R., and Baumann, A., Evolution and composition of the lithospheric mantle underneath the Western Arabian peninsula: constraints from Sr-Nd isotope systematics of mantle xenoliths, Contrib. Mineral. Petrol., 1990, vol. 105, pp. 406–427.

    Article  Google Scholar 

  • Hofstetter, A., Feldman, L., and Rotstein, Y., Crustal structure of Israel: constrains from teleseismic and gravity data, Geophys. J. Int., 1991, vol. 104, pp. 371–379.

    Article  Google Scholar 

  • Kaliwoda, M., Altherr, R., and Meyer, H., Composition and thermal evolution of the lithospheric mantle beneath Harrat Uwayrid, eastern flank of the Red Sea rift (Saudi Arabia), Lithos, 2007, vol. 99, pp. 105–120.

    Article  Google Scholar 

  • Kogarko, L.N., Kurat, G., and Ntaflos, T., Carbonate metasomatism of the oceanic mantle beneath Noronha island, Brazil, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 577–587.

    Article  Google Scholar 

  • Koloskov, A.V., Ul’traosnovnye vklyucheniya i vulkanity kak samoreguliruyushchayasya geologicheskaya sistema (Ultramafic Inclusions and Volcanic Rocks as Self-Regulating Geological System), Moscow: Nauchnyi mir, 1999.

    Google Scholar 

  • Krienitz, M. and Haase, M., The evolution of the Arabian lower crust and lithospheric mantle—geochemical constraints from Southern Syrian mafic and ultramafic xenoliths, Geochem. Geol., 2011, vol. 280, pp. 271–283.

    Article  Google Scholar 

  • Meen, J., Mantle metasomatism and carbonatites: an experimental study of a complex relationship, Geol. Soc. Amer. Sp. Pap., 1987, vol. 215, pp. 91–99.

    Google Scholar 

  • Mittlefehldt, D.W., Petrology of high pressure clinopyroxenite series xenoliths, Mount Carmel, Israel, Contrib. Mineral. Petrol., 1986, vol. 94, pp. 245–252.

    Article  Google Scholar 

  • Nasir, A., The lithosphere beneath the northwestern part of the Arabian Plate Jordan. Evidence from xenoliths and geophysics, Tectonophysics, 1992, vol. 201, pp. 357–370.

    Article  Google Scholar 

  • Nasir, S. and Stern, R., Lithosphere petrology of the Eastern Arabian plate: constraints from Al-Ashkhara (Oman) xenoliths, Lithos, 2012, vol. 132–133, pp. 98–112.

    Article  Google Scholar 

  • Parkinson, I.J., Arculus, R.J., and Eggns, S.M., Xenoliths from Grenada, Lesser Antilles island arc, Contrib. Mineral. Petrol., 2003, vol. 146, pp. 241–262.

    Article  Google Scholar 

  • Popov, V.S., Separation of a melt from solid protolith during magma formation (a review of foreign literature), Zap. Vsesoyuz. Miner. O-va, 1991, vol. 120, no. 2, pp. 103–114.

    Google Scholar 

  • Rocco, I., Lustrino, M., and Melusso, L., Petrological, geochemical and isotopic characteristics of the lithospheric mantle beneath Sardinia (Italy) as indicated by ultramafic xenoliths enclosed in alkali lavas, Geol. Rundsch., 2012, vol. 101, pp. 1111–1125.

    Article  Google Scholar 

  • Roeder, P.L. and Poustovetov, A., Growth forms and composition of chromian spinel in MORB magma: diffusioncontrolled crystallization of chromian spinel, Can. Mineral., 2001, vol. 39, pp. 397–416.

    Article  Google Scholar 

  • Ryabchikov, I.D., Ntaflos, T., Kurat, G., and Kogarko, L.N., Glass bearing xenoliths from Cape Verde: evidence for a hot rising mantle jet, Mineral. Petrol., 1995, vol. 55, pp. 217–237.

    Article  Google Scholar 

  • Sharkov, E.V., Snyder, G.A., Taylor, L.A., et al., Geochemical peculiarities of the asthenosphere beneath the Arabian Plate: evidence from mantle xenoliths of the Quaternary Tell-Danun Volcano (Syrian–Jordan Plateau, Southern Syria), Geochem. Int., 1996, vol. 34, no. 9, pp. 737–752.

    Google Scholar 

  • Sharygin, V.V. and Timina, T.Yu., Rhenite in the alkaline basalts: potential indicator of P–T conditions: melt inclusion data, in Geokhimiya magmaticheskikh porod. Shkola “Shchelochnoi magmatizm Zemli–2008” (Geochemistry of Magmatic Rocks. School “Alkaline Magmatism of the Earth-2008”), St. Petersburg, 2008, pp. 175–176.

    Google Scholar 

  • Stein, M. and Katz, A., The composition of the subcontinental lithosphere beneath Israel: inferences from peridotitic xenoliths, Isr. J. Earth Sci., 1989, vol. 38, pp. 75–87.

    Google Scholar 

  • Stein, M., Garfunkel, Z., and Jagoutz, F., Chronothermometry of peridotitic and pyroxenite xenoliths: implications for the thermal evolution of the Arabian lithosphere, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 1325–1337.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basalts, A.D. Saunders and M.J. Norry, Eds., Geol. Soc. London: Spec. Publ., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  • Vapnik, Y., Melt and fluid inclusions and mineral thermobarometry of mantle xenoliths in Makhtesh Ramon, Israel, Isr. J. Earth Sci., 2005, vol. 54, pp. 15–28.

    Article  Google Scholar 

  • White, R.W., Ultramafic inclusions in basaltic rocks from Hawaii, Contrib. Mineral. Petrol., 1966, vol. 12, pp. 245–317.

    Article  Google Scholar 

  • Willie, P., Metasomatism and fluid generation in mantle xenoliths, in Mantle Xenoliths, P.H. Nixon, Ed., Chichester: Wiley, 1987, pp. 625–640.

    Google Scholar 

  • Wilshire, H. and Shervais, J., Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from Western United States, Phys. Chem. Earth, 1975, vol. 9, pp. 257–272.

    Article  Google Scholar 

  • Yudalevich, Z.A., Fershtater, G.B., and Eiyal’, M., Magmatism of Makhtesh Ramona: Geology, Geochemistry, and Petrogenesis (Khar Kha-Negev nature conservation zone, Israel), Litosfera, 2014, no. 3, pp. 70–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Fershtater.

Additional information

Original Russian Text © G.B. Fershtater, Z.A. Yudalevich, 2017, published in Petrologiya, 2017, Vol. 25, No. 2, pp. 168–193.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fershtater, G.B., Yudalevich, Z.A. Mantle metasomatism and magma formation in continental lithosphere: Data on xenoliths in alkali basalts from the Makhtesh Ramon, Negev desert, Israel. Petrology 25, 181–205 (2017). https://doi.org/10.1134/S0869591117010027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117010027

Navigation