Skip to main content
Log in

Prospects of the method of stepwise crushing as a source of information on the fluid phase of rocks and minerals

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper illustrates opportunities provided by the method of stepwise crushing for the investigation of the fluid phase of geologic objects. Owing to the efficient separation of gases from fluid inclusions of different generations trapped during mineral growth and/or subsequent alteration (metasomatic and hydrothermal), stepwise crushing allows us to obtain the isotopic characteristics of end-members and, thus, reliably establish the source and evolution of fluids in magmatic and postmagmatic processes; this method provides clues to a better understanding of interaction of global reservoirs, such as the mantle, crust, and atmosphere. The importance of information obtained by this method is exemplified here by the results of the investigation of mantle rocks and minerals from various geologic environments (MORB, SCLM, and carbonated mantle). It was shown that the multi-isotope approach yields most comprehensive data on the genetic features and evolution of the fluid phase. The importance of combining isotope geochemical and microthermometric fluid inclusion data is demonstrated by the example of a mantle xenolith of garnet lherzolite from the Jetty Oasis. Together with the microthermometric investigation of fluid inclusions and developing laser techniques for opening of individual inclusions, the method of stepwise crushing provides a means for solving one of the most important practical problems—obtaining information on the geochemical features and physicochemical parameters of mineral-forming (and ore-forming) processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottinga, Y., Calculation of fractionation factors for carbon and oxygen exchange in the system calcite–carbon dioxide–water, J. Phys. Chem., 1968, vol. 72, pp. 800–808.

    Article  Google Scholar 

  • Buikin, A.I. and Nevinny, Yu.A., Apparatus for sample preparation from fluid inclusions in rocks and minerals, RFPatent No. 2449270 (2012).

    Google Scholar 

  • Buikin, A.I. and Verchovsky, A.B., C, N2, He, Ar in fluid inclusions in mantle xenoliths of Dreiser Weiher (Germany) and Szentbekalla (Hungary) volcanoes, Tez. ESMPG (Proceedings of ESEMPG-2013), Moscow, 2013, p. 21 [in Russian].

    Google Scholar 

  • Buikin, A.I., Trieloff, M., Hopp, J., Althaus, T., Korochantseva, E.V., Schwarz, W.H., and Altherr, R., Noble gas isotopes suggest deep mantle plume source of Late Cenozoic mafic alkaline volcanism in Europe, Earth Planet. Sci. Lett., 2005, vol. 230, pp. 143–162.

    Article  Google Scholar 

  • Buikin, A.I., Nevinnyi, Yu.A., Ustinov, V.I., Grinenko, V.A., Smirnova, E.P., Sevast’yanov, V.S., Korochantseva, E.V., and Silantyev, S.A., High-vacuum device for isotope study of light elements in fluid inclusions from mantle rocks by stepwise crushing, Electron. Nauchn.-Inform. Zh. Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2010, no. 2, p. 10. doi 10.2205/2010NZ000025

    Google Scholar 

  • Buikin, A.I., Verchovsky, A.B., Grinenko, V.A., and Kogarko, L.N., The first stepwise crushing data on C, Nand Ar isotopic and elemental ratios in Guli carbonatites, Abstracts of 21th Goldschmidt Conference, Mineral. Mag., 2011, vol. 85, no. 3, 596.

    Google Scholar 

  • Buikin, A.I., Verchovsky, A.B., Grinenko, V.A., Kogarko, L.N., Sevast’ yanov, V.S., Nevinnyi, Yu.A., and Smirnova, E.P., Variations of S, O, N, and Ar isotope composition in gas–liquid inclusions in the peridotite xenoliths from the Jetty Oasis, East Antarctica, in Materialy XIIMezhdunar. konf. “Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle” (Proceedings of 12th International Conference on Physiochemical and Petrophysical studies in the Earth’s Sciences), 2011, pp. 55–58.

    Google Scholar 

  • Buikin, A.I., Verchovsky, A.B., and Kogarko, L.N., New data on the element and isotope composition of fluid inclusions in the carbonatites and ultrabasic rocks of the Guli Massif, in Tez. Konf. Rudnyi potentsial shchelochnogo, kimberlitovogo i karbonatitovogo magmatizma (Proceedings of Conference on the Ore Potential of Alkaline, Kimberlite, and Carbonatite Magmatism), 2012, pp. 22–24.

    Google Scholar 

  • Buikin, A.I., Verchovsky, A.B., Grinenko, V.A., Silant’ ev, S.A., Sevast’ yanov, V.S., Nevinnyi, Yu.A., and Smirnova, E.P., C, N, He, and Ar isotope and element ratios in fluid inclusions from MORB chilled glasses: stepwise crushing data, Geochem. Int., 2013, vol. 51, no. 4, pp. 338–343.

    Article  Google Scholar 

  • Buikin, A.I., Solovova, I.P., Verchovsky, A.B., Kogarko, L.N., and Averin, A.A., PVT parameters of fluid inclusions and the C, O, N, and Ar isotopic composition in a garnet lherzolite xenolith from the Oasis Jetty, East Antarctica, Geochem. Int., 2014a, vol. 52, no. 10, pp. 805–821.

    Article  Google Scholar 

  • Buikin, A.I., Verchovsky, A.B., Sorokhtina, N.V., and Kogarko, L.N., Composition and sources of volatiles and noble gases in fluid inclusions in pyroxenites and carbonatites of the Seblyavr Massif, Kola Peninsula, Petrology, 2014b, vol. 22, no. 5, pp. 507–519.

    Article  Google Scholar 

  • Buikin, A.I., Verchovsky, A.B., Kogarko, L.N., Grinenko, V.A., and Kuznetsova, O.V., The fluid phase evolution during the formation of carbonatite of the Guli Massif: evidence from the isotope (C, A, Ar) data, Dokl. Earth Sci., 2016, vol. 466, Part 2, pp. 135–137.

    Article  Google Scholar 

  • Carroll, M.R. and Draper, D.S., Noble gases as trace elements in magmatic processes, Chem. Geol., 1994, vol. 117, pp. 37–56.

    Article  Google Scholar 

  • Cartigny, P., Jendrzejewski, N., Pineau, F., Petit, E., and Javoy, M., Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the South-West Indian Ridge, Earth Planet. Sci. Lett., 2001, vol. 194, pp. 241–257.

    Article  Google Scholar 

  • Dauphas, N. and Marty, B., Heavy nitrogen in carbonatites of the Kola Peninsula: a possible signature of the deep mantle, Science, 1999, vol. 286, pp. 2488–2490.

    Article  Google Scholar 

  • Dunai, T. and Baur, H., Helium, neon, and argon systematics of the European subcontinental mantle: implications for its geochemical evolution, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2767–2783.

    Article  Google Scholar 

  • Egorov, L.S., Ijolite–karbonatitovyi plutonizm na primere maimecha–kotuiskogo kompleksa Polyarnoi Sibiri (Ijolite–Carbonatite Plutonism by the Example of the Maimecha–Kotui Complex of Polar Siberia), Leningrad: Nedra, 1991.

    Google Scholar 

  • Fischer, T.P., Burnard, P., Marty, B., de Moo, J.M., Hilton, D.R., Shaw, A.M., Barry, P.H., Ramirez, C., and Mangasin, F., Oldoinyo Lengai gas chemistry from 2005 to 2009: insights to carbonatite–nephelinite volcanism, AGU Fall Meeting, 2009

    Google Scholar 

  • Hopp, J., Trieloff, M., and Altherr, R., Neon isotopes in mantle rocks from the Red Sea region reveal large-scale plume–lithosphere interaction, Earth Planet. Sci. Lett., 2004, vol. 219, pp. 61–76.

    Article  Google Scholar 

  • Javoy, M. and Pineau, F., The volatiles record of a “popping” rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in the vesicles, Earth Planet. Sci. Lett., 1991, vol. 107, pp. 598–611.

    Article  Google Scholar 

  • Kogarko, L.N., Kurat, G., and Ntaflos, T., Henrymeyerite in the metasomatized upper mantle of Eastern Antarctica, Can. Mineral., 2007, vol. 45, pp. 497–501.

    Article  Google Scholar 

  • Marty, B. and Zimmermann, L., Volatiles (H, C, N,Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 3619–3633.

    Article  Google Scholar 

  • Pineau, F., Shilobreeva, S., Hekinian, R., Bideau, D., and Javoy, M., Deep-sea explosive activity on the Mid-Atlantic Ridge near 34°50N: a stable isotope (C, H, O) study, Chem. Geol., 2004, vol. 211, pp. 159–175.

    Article  Google Scholar 

  • Pokrovsky, B.G., Korovaya kontaminatsiya mantiinykh magm po dannym izotopnoi geokhimii (Crustal Contamination of Mantle Magmas on the Basis of Isotope Geochemistry), Moscow: Nauka, 2000.

    Google Scholar 

  • Roedder, E., Fluid Inclusions, Rev. Mineral., 1984, vol. 12.

  • Sarda, Rh., Staudaher, Th., and Allegre, C.J., 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution, Earth Planet. Sci. Lett., 1985, vol. 72, pp. 357–375.

    Article  Google Scholar 

  • Scarsi, P., Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 21, pp. 3751–3762.

    Article  Google Scholar 

  • Sokerina, N.V., Zykin, N.N., Efanova, L.I., Shanina, S.N., and Simakova, Yu.S., Conditions of formation of quartz veins of gold occurrences of the Manitanyrdskii district (Near-Polar Urals), Litosfera, 2010, no. 2, pp. 100–111.

    Google Scholar 

  • Staudaher, T., Sarda, P., Richardson, S.H., Allègre, C.J., Sagna, I., and Dmitriev, L.V., Noble gases in basalt glasses from the Mid-Atlantic Ridge topographic high at 14°N: geodynamic consequences, Earth Planet. Sci. Lett., 1989, vol. 96, pp. 119–133.

    Article  Google Scholar 

  • Trieloff, M., Kunz, J., Clague, D.A., Harrison, D., and Allègre, C.J., The nature of pristine noble gases in mantle plumes, Science, 2000, vol. 288, pp. 1036–1038.

    Article  Google Scholar 

  • Trull, T., Nadeau, S., Pineau, F., Polve, M., and Javoy, M., C–He systematic in hotspot xenoliths: implications for mantle carbon contents and carbon recycling, Earth Planet. Sci. Lett., 1993, vol. 118, pp. 43–64.

    Article  Google Scholar 

  • Verchovsky, A.B., Sephton, M.A., Wright, I.P., and Pillinger, C.T., Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion, Earth Planet. Sci. Lett., 2002, vol. 199, nos. 3–4, pp. 243–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Buikin.

Additional information

Original Russian Text © A.I. Buikin, A.I. Kamaleeva, N.A. Migdisova, 2016, published in Petrologiya, 2016, Vol. 24, No. 3, pp. 325–336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buikin, A.I., Kamaleeva, A.I. & Migdisova, N.A. Prospects of the method of stepwise crushing as a source of information on the fluid phase of rocks and minerals. Petrology 24, 303–313 (2016). https://doi.org/10.1134/S0869591116030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591116030024

Keywords

Navigation