Skip to main content
Log in

Transform margin Maastrichtian-Paleogene magmatism in East Asia: The problem of “belts” in the Koryak-Western Kamchatka region

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents data on the specifics of continental-margin magmatism in pull-apart structures at the Cretaceous-Paleogene boundary and discusses the sources of this magmatism, which were produced when the Asian-Pacific transform boundary was formed in place of the Cretaceous convergent boundary. The continental margin was thereby broken by strike-slip and down-dip-strike-slip faults, which formed the East Asian Rift System (EARS). The system induced transform magmatism of two complexes: (i) late Campanian-Eocene weakly differentiated basaltoids (transform boundary basalts, TBB) and (ii) Eocene-Oligocene complexes of acidic rocks (transform boundary acidic rocks, TBA). Similar to plateau basalts, the former complex was produced by fissure eruptions and occurs as extensive areas of volcanic rocks and shield volcanoes, while the latter complex comprises central volcanic edifices crowned with calderas. The specifics of the TBB volcanics is their multicomponent composition: along with dominant OIB-WPB features, they display MORB and IAB signatures (in the absence of a synchronous subduction zone). Isotopic-geochemical and seismic-tomography evidence testifies that the rocks were produced by melts of three types: lower mantle upwelling material that interacted with the asthenosphere and/or fragments of depleted oceanic mantle and with lithospheric domains of the Asian continental margin that had suffered multistage reworking in suprasubduction environments. The isotopic-geochemical features of the acidic TBA rocks, which were formed after (or locally, simultaneously with) the TBB basaltoids, suggest their crustal genesis. The anatexis of the continental margin was triggered by the transition from an extensional to compressional environment (because of mid-Eocene subduction from the ocean) and lag of the mantle magmatic front, which maintained a higher temperature regime. The geodynamic conditions in which the plateau basalts were generated in the extensional zones on continental margins (in East Asia) and in the within-plate environment itself (in the central Arctic) were different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agapitov, D.I., Burlin, Yu.K., Drabkin, I.E., et al., Results of Oil Exploration in the Anadyr Basin, in Beringiya v kainozoe (Beringia in Cenozoic), Magadan: Knizhnoe izd-vo, 1976, pp. 89–103.

    Google Scholar 

  • Akhmet’ev, M.A., Dvoryankin, A.I., Milekhin, A.I., et al., Paleocene of the Rarytkin Ridge, Izv. Akad. Nauk SSSR, Ser. Geol., 1989, no. 3, pp. 44–57.

    Google Scholar 

  • Akinin, V.V. and Miller, E.L., Evolution of calc-alkaline magmas of the Okhotsk-Chukotka volcanic belt, Petrology, 2011, vol. 19, no. 3, pp. 237–277.

    Article  Google Scholar 

  • Akinin, V.V., Late Mesozoic and Cenozoic Magmatism and Reworking of the Lower Crust in the Northern Pacific Framing, Extended Abstract of Doctoral (Geolmin.) Dissertation, Moscow: SVKNII RAN, 2012.

    Google Scholar 

  • Bijwaard, H., Spakman, W., and England, E.R., Closing the gap between global travel time tomography, J. Geophys. Res., 1998, vol. 103, pp. 30055–30078.

    Article  Google Scholar 

  • Bindeman, I.N., Vinogradov, V.I., Valley, J.W., et al., Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of zircon from Sredinny and Ganal massifs, J. Geol., 2002, vol. 110, pp. 271–289.

    Article  Google Scholar 

  • Bogdanov, N.A. and Dobretsov, N.L., The Okhotsk oceanic volcanic plateau, Russ. Geol. Geophys., 2002, vol. 43, no. 2, pp. 101–114.

    Google Scholar 

  • Chashchin, A.A., Polin, V.F., Ivanov, V.V., et al., Fluid mode of the Paleogene and Neogene-Quaternary tin-silver and gold-silver ore magmatic systems of Koryakia and Kamchatka, in Rudnye mestorozhdeniya kontinental’nykh okrain (Ore Deposits at Continental Margins), Vladivostok: Dal’nauka, 2000, pp. 69–90.

    Google Scholar 

  • Dagis, L.A. and Filatova, N.I., Volcanogenic complexes of the Anadyr Basin, Tikhookean. Geol., 1990, no. 4, pp. 38–43.

    Google Scholar 

  • Engebretson, D.C., Cox, A., and Gordon, R., Reconstructions, plate interactions, and trajectories of oceanic and continental plates in the Pacific Basin, in Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin, J.W.H. Monger and J. Francheteau, Eds., Am. Geophys. Union Geodynam. Ser., 1987, vol. 18, pp. 19–27.

    Chapter  Google Scholar 

  • Fedorov, P.I., New data on age and composition of volcanics in Bennett Island (East Arctic), Dokl. Earth Sci., 2005, vol. 401, pp. 187–191.

    Google Scholar 

  • Fedorov, P.I. and Filatova, N.I., Geochemistry and petrology of Late Cretaceous and Cenozoic basalts from extensional zones at the continental margin of northeastern Asia, Geochem. Int., 1999, vol. 37, no. 2, pp. 91–107.

    Google Scholar 

  • Fedorov, P.I., Kovalenko, D.V., and Ageeva, O.A., Western Kamchatka-Koryak continental-margin volcanogenic belt: age, composition, and sources, Geochem. Int., 2011, vol. 49, no. 8, pp. 768–792.

    Article  Google Scholar 

  • Fedorov, P.I., Kovalenko, D.V., Bayanova, T.B., and Serov, P.A., Early Cenozoic magmatism in the continental margin of Kamchatka, Petrology, 2008, vol. 16, no. 3, pp. 261–278.

    Article  Google Scholar 

  • Filatova, N.I., Tectonic position of the Maastrichtian-Eocene basaltic magmatism in the northwestern Pacific Belt, Geotektonika, 1987, no. 4, pp. 85–101.

    Google Scholar 

  • Filatova, N.I., Periokeanicheskie vulkanogennye poyasa (Perioceanic Volcanogenic Belts), Moscow: Nauka, 1988.

    Google Scholar 

  • Filatova, N.I., Comparative systematics of basaltoids from the extension zones of the Asian continental margin and the oceanic islands of the Pacific Ocean: isotopic and seismic tomographic perspectives, Petrology, 2002a, vol. 10, no. 4, pp. 362–390.

    Google Scholar 

  • Filatova, N.I., Alkaline volcanism at the eastern margin of Eurasia: evidence of the Pacific superplume, Dokl. Earth Sci., 2002b, vol. 383, no. 3, pp. 271–277.

    Google Scholar 

  • Filatova, N.I., Specifics of magmatism in marginal continental and marginal-sea pull-apart basins: western periphery of the Pacific Ocean, Petrology, 2008, vol. 16, no. 5, pp. 448–467.

    Article  Google Scholar 

  • Filatova, N.I., New data on the structure and history of formation of the conjunction zone between the Middle Cretaceous Okhotsk-Koryak and Cenozoic Olyutor-Kamchatka orogen belts (Vatyn-Ukelayat suture zone), Dokl. Earth Sci., 2013, vol. 448, no. 1, pp. 7–11.

    Article  Google Scholar 

  • Filatova, N.I., New data on the tectonic position of Mesozoic rocks in Western Kamchatka structures of the Middle Cretaceous orogenic belt in Eastern Asia, Dokl. Earth Sci., 2014, vol. 455, no. 2, pp. 389–394.

    Article  Google Scholar 

  • Filatova, N.I. and Dagis, L.A., Structure of the rear part of the Western Kamchatka-Koryak volcanic belt as exemplified by the Russkogorsk area), Tikhookean. Geol., 1990, no. 2, pp. 23–32.

    Google Scholar 

  • Filatova, N.I. and Fedorov, P.I., The early Cenozoic magmatism of the extensional zones on NE Asian continental margin (Russia), Ofioliti, 1997, vol. 21, no. 1, pp. 119–126.

    Google Scholar 

  • Filatova, N.I. and Khain, V.E., Structural units of the Central Arctic and their relations to the Mesozoic Arctic plume, Geotectonics, 2009, vol. 43, no. 6, pp. 462–485.

    Article  Google Scholar 

  • Filatova, N.I., Novitskii, N.P., Efremova, L.B., et al., Role of garnet-bearing rhyolites in the evolution of felsic volcanism of the Andean Belt (Argentina), Dokl. Akad. Nauk, 1995, vol. 343, no. 4, pp. 522–528.

    Google Scholar 

  • Gladenkov, Yu.B., Shantser, A.E., Chelebaeva, A.I., et al., Nizhnii paleogen Zapadnoi Kamchatki (stratigrafiya, paleogeografiya, geologicheskie sobytiya) (Lower Paleogene in Western Kamchatka: Stratigraphy, Paleogeography, and Geological Events), Moscow: GEOS, 1997.

    Google Scholar 

  • Grigor’ev, V.N., Kazimirov, A.D., Krylov, K.A., et al., Structural position and petrochemistry of the Danian-Paleocene basaltic rocks of the Al’katvaam Zone of the Koryak Highland, Geotektonika, 1984, no. 3, pp. 88–96.

    Google Scholar 

  • Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 297–314.

    Article  Google Scholar 

  • Hourigan, J.K., Brandon, M.T., Soloviev, A.V., et al., Eocene arc-continent collision and crustal consolidatian in Kamchatka, Russian Far East, Am. J. Sci., 2009, vol. 309, pp. 333–396.

    Article  Google Scholar 

  • Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification on the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, p. 523.

    Article  Google Scholar 

  • Karyakin, Yu.V. and Shipilov, E.V., Geochemical characteristics and 40Ar/39Ar age of magmatic rocks of the Franz Josef Land archipelago, in Obshchie i regional’nye problemy tektoniki i geodinamiki. Mat. XLI Tekt. soveshch (General and Regional Problems of Tectonics and Geodynamics. Proceedings of 41th Tectonic Conference), Moscow: GEOS, 2008, pp. 389–391.

    Google Scholar 

  • Khanchuk, A.I. and Ivanov, V.V., Mesozoic-Cenozoic geodynamics in Eastern Russia and gold mineralization, in Geodinamika i metallogeniya (Geodynamics and Metallogeny), Vladivostok: Dal’nauka, 1999, pp. 7–30.

    Google Scholar 

  • Konnikov, E.G., Chubarov, V.M., Poletaev, V.A., et al., New structural and geochemical data on the Dukuk gabbronorite-cortlandite massif, Kamchatka, Russ. J. Pac. Geol., 2010, vol. 4, no. 6, pp. 470–482.

    Article  Google Scholar 

  • Konstantinovskaya, E.A., Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia), in Active Subduction and Collision in Southeast Asia (SEASIA), S. Lallemand, C.-S. Liu, J. Angelier, and Y.B. Tsai, Eds., Tectonophysics, 2001, vol. 333, pp. 75–94.

    Google Scholar 

  • Kovalenko, D.V., Paleomagnetizm geologicheskikh kompleksov Kamchatki i Yuzhnoi Koryakii. Tektonicheskaya i geofizicheskaya interpretatsiya (Paleomagnetism of the Kamchatka and South Koryak geological Complexes. Tectonic and Geophysical Interpretation), Moscow: Nauchnyi mir, 2003.

    Google Scholar 

  • Ledneva, G.V., Nosova, A.A., and Solov’ev, A.V., “Calcalkaline” magmatism of the Omgon Range: evidence for Early Paleogene extension in the Western Kamchatka Segment of the Eurasian continental margin, Petrology, 2006, vol. 14, no. 2, pp. 154–186.

    Article  Google Scholar 

  • Levskii, L.K., Stolbov, N.M., Bogomolov, E.S., et al., Sr-Nd-Pb isotopic systems in basalts of the Franz Josef Land Archipelago, Geochem. Int., 2006, vol. 44, no. 4, pp. 327–337.

    Article  Google Scholar 

  • Lonsdale, P., Paleogene history of the Kula Plate: offshore evidence and onshore implication, Geology, 1988, vol. 100, no. 5, pp. 733–754.

    Google Scholar 

  • Luchitskaya, M.V. and Soloviev, A.V., Early Eocene magmatism in the Sredinnyi Range, Kamchatka: composition and geodynamic aspects, Petrology, 2012, vol. 20, no. 2, pp. 147–187.

    Article  Google Scholar 

  • Maruyama, S., Santosh, M., and Zhao, D., Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary, Gondwana Res., 2007, vol. 11, pp. 7–37.

    Article  Google Scholar 

  • Mitrofanov, N.P., Podol’skii, A.M., Kostin, N.E., et al., Koryak volcanoplutonic complex, Izv. Akad. Nauk SSSR, Ser. Geol., 1979, no. 4, pp. 23–35.

    Google Scholar 

  • Palandzhyan, S.A., The Western Koryak Belt of dike and hypabyssal rocks as an indicator of extension and destruction of the fore-arc of the Okhotsk-Chukot volcanic belt in the Late Senonian-Paleocene, Dokl. Earth Sci., 2002, vol. 385, no. 6, pp. 651–655.

    Google Scholar 

  • Pearce, J.A. and Norry, J.M., Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks, Contrib. Mineral. Petrol., 1979, vol. 69, pp. 33–47.

    Article  Google Scholar 

  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, no. 4, pp. 956–983.

    Article  Google Scholar 

  • Polin, V.F. and Moll-Stolkap, E.J., Petrological-geochemical criteria for tectonic setting of the Chukotka chain of the Okhotsk-Chukotka volcanic belt, Tikhookean. Geol., 1999, vol. 18, no. 4, pp. 29–47.

    Google Scholar 

  • Polin, V.F., Sakhno, V.G., Maksimov, S.O., and Sandimirov, I.V., Isotope geochemistry and deep sources of subalkaline and alkaline rocks from the Paleogene contrasting series of the Amguema-Kanchalan volcanic field, Okhotsk-Chukotka volcanic belt, Dokl. Earth Sci., 2009, vol. 429, no. 8, pp. 1288–1294.

    Article  Google Scholar 

  • Pozdeev, A.I., Late Paleogene subaerial volcanism of the Koryak Highland, Sov. Geol., 1972, no. 7, pp. 35–46.

    Google Scholar 

  • Sakhno, V.G., Polin, V.F., Akinin, V.V., et al., Volcanic ash in sediments of the Sea of Okhotsk: identification based on minor and rare earth elements, Dokl. Earth Sci., 2010, vol. 434, no. 3, pp. 1156–1163.

    Article  Google Scholar 

  • Shapiro, M.N. and Solov’ev, A.V., Formation of the Olyutorsky-Kamchatka foldbelt: a kinematic model, Russ. Geol. Geophys., 2009, vol. 50, no. 8, pp. 660–673.

    Article  Google Scholar 

  • Shephard, G.E., Muller, R.D., and Seton, M., The tectonic evolution of the Arctic since Pangea breakup: integrating constraints from surface geology and geophysics with mantle structure, Earth Sci. Rev., 2013, vol. 124, pp. 148–183.

    Article  Google Scholar 

  • Solov’ev, A.V., Izuchenie tektonicheskikh protsessov v oblastyakh konvergentsii litosfernykh plit: metody trekovogo datirovaniya i strukturnogo analiza (Study of Tectonic Processes in Regions of Convergent Lithospheric Plates: Fission Track Dating and Structural Analysis), Moscow: Nauka, 2008.

    Google Scholar 

  • Staudigel, H., Park, K.H., Pringle, M., et al., The longevity of the South Pacific isotopic and thermal anomaly, Earth Planet. Sci. Lett., 1991, vol. 102, no. 1, pp. 24–44.

    Article  Google Scholar 

  • Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts, in Magmatism in Ocean Basin, Geol. Soc. Spec. Publ. 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  • Vasco, D.W. and Johnson, L.R., Whole earth structure estimated from seismic arrival times, J. Geophys. Res., 1998, vol. 103, no. 132, pp. 2633–2671.

    Article  Google Scholar 

  • Wood, D.A., The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province, Earth Planet. Sci. Lett., 1980, vol. 50, pp. 11–30.

    Article  Google Scholar 

  • Yarmolyuk, V.V., Kovach, V.P., Kozakov, I.K., et al., Mechanisms of continental crust formation in the Central Asian Foldbelt, Geotectonics, 2012, vol. 46, no. 4, pp. 251–272.

    Article  Google Scholar 

  • Yarmolyuk, V.V. and Kovalenko, V.I., Riftogennyi magmatizm aktivnykh kontinental’nykh okrain i ego rudonosnost’ (Rift Magmatism of Active Continental Margins and Its Ore Potential), Moscow: Nauka, 1991.

    Google Scholar 

  • Yarmolyuk, V.V., Kuz’min, M.I., and Vorontsov, A.A., West Pacific convergent boundaries and their role in the formation of the Central Asian Fold Belt, Russ. Geol. Geophys., 2013, vol. 54, no. 12, pp. 1831–1850.

    Article  Google Scholar 

  • Zakharov, M.N., Konusova, N.N., and Smirnova, E.A., Geochemical features of Cenozoic volcanic rocks of the Anadyr Basin, Geol. Geofiz., 1994, vol. 44, no. 3, pp. 34–41.

    Google Scholar 

  • Zinkevich, V.P., Formatsii i etapy tektonicheskogo razvitiya severa Koryakskogo nagor’ya (Rock Associations and Evolution Stages of the Koryak Highland), Moscow: Nauka, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Filatova.

Additional information

Original Russian Text © N.I. Filatova, 2015, published in Petrologiya, 2015, Vol. 23, No. 4, pp. 363–385.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, N.I. Transform margin Maastrichtian-Paleogene magmatism in East Asia: The problem of “belts” in the Koryak-Western Kamchatka region. Petrology 23, 331–352 (2015). https://doi.org/10.1134/S0869591115040025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591115040025

Keywords

Navigation