Skip to main content
Log in

Peridotite-basalt association at MAR between 19°42′ and 19°59′ N: Evaluation of petrogenetic conditions and material balance during hydrothermal transformation of the oceanic crust

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Petrogenetic conditions are evaluated for a poorly studied segment of the MAR axial zone. Mantle peridotites from MAR at 19°42′–19°59′ N are determined to show low to moderately low degrees of melting. The geochemistry of the peridotites is close to that of typical abyssal peridotites hosting active hydrothermal fields in the Atlantic (such as the Ashadze-Semenov-Logachev), except that plagioclase lherzolite occurs among the peridotites. Some of our samples collected in the area represent magnesian metabasites which could have been produced by metasomatic transformation (rodingitization) of harzburgite at contact with gabbroids. Cr and Ni concentrations in serpentine were proved to be indicative of the precursor mineral of the serpentine. The distribution of the isotopic composition data points of the MAR abyssal peridotites in the 87Sr/86Sr-143Nd/144Nd diagram suggests that outcrops of mantle peridotites and related plutonic rocks in the crest zone of the ridge expose blocks of deep-sitting rocks that were not simultaneously brought to the surface. The MAR axial segment between 19°42′ and 19°59′ N can be viewed as prospective for searches for hydrothermal ore mineralization. Compositional parameters of basalt in our rock collection correspond to those of the most depleted MORB varieties in the Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abstracts of Chapman Conference on Detachments in Oceanic Lithosphere. Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems (Agros, 2010).

  • Allen, D.E. and Seyfried, W.E., Jr., Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 6, pp. 1347–1354.

    Article  Google Scholar 

  • Bach, W., Jöns, N., and Klein, F., Metasomatism within ocean crust, in The Role of Fluids in Terrestrial And Extraterrestrial Processes, Harlov, D. E. and Austrheim, H., Eds., Heidelberg-New York-Dordrecht-London: Springer, 2013.

    Google Scholar 

  • Bogdanov, Yu.A., Bortnikov, N.S., Vikent’ev, I.V., et al., A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14°45′ N latitude, Mid-Atlantic Ridge, Geol. Ore Dep., 1997, vol. 39, no. 1, pp. 58–78.

    Google Scholar 

  • Bogdanov, Yu.A., Bortnikov, N.S., Vikent’ev, I.V., et al., Mineralogical-geochemical peculiarities of hydrothermal sulfide ores and fluids in the Rainbow Field associated with serpentinites, Mid-Atlantic Ridge (36°14′ N), Geol. Ore Dep., 2002, vol. 44, no. 6, pp. 444–473.

    Google Scholar 

  • Bonatti, E., Subcontinental mantle exposed in the Atlantic Ocean on St. Peter-Paul Islets, Nature, 1990, vol. 345, no. 6278, pp. 800–802.

    Article  Google Scholar 

  • Bortnikov, N.S. and Silantyev, S.A., The interplay between serpentinization and hydrothermal activity at Mid-Atlantic Ridge (MAR): constraints from Rainbow, Logachev and Ashadze fields, CAG-MAG Annual Meeting. Abstract, 2011, Ottawa, p. 22.

    Google Scholar 

  • Bryan, W.B., Humphris, S.E., Thompson, G., and Casey, J.F., Comparative volcanology of small axial eruptive centers in the Mark Area, J. Geophys. Res., 1994, vol. 99, pp. 2973–2984.

    Article  Google Scholar 

  • Cannat, M., Emplacement of mantle rocks in the seafloor at mid-ocean ridges, J. Geophys. Res., 1993, vol. 98, pp. 4163–4172.

    Article  Google Scholar 

  • Cannat, M., Lagabrielle, Y., Bougault, H., et al., Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15° N region, Tectonophysics, 1997, vol. 279, pp. 193–213.

    Article  Google Scholar 

  • Casey, J.F., Comparison of major and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge, Proceedings of the Ocean Drilling Program, Scientific Results, Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. Eds., 1997, vol. 153, pp. 181–241.

    Google Scholar 

  • Delacour, A., Früh-Green, G.L., Frank, M., et al., Sr- and Nd-isotope geochemistry of the Atlantis Massif (30° N, MAR): implications for fluid fluxes and lithospheric heterogeneity, Chem. Geol., 2008, vol. 254, pp. 19–35.

    Article  Google Scholar 

  • Detrick, R.S., Fox, P.J., Schulz, N., et al., Geologic and tectonic setting of the MARK area, in Shipboard Scientific Party, Proc. ODP, Init. Repts. (Pt. A), 1988, vol. 106/109, pp. 15–22.

    Google Scholar 

  • Dick, H.J.B., Fisher, R.L., and Bryan, W.B., Mineralogic variability of the uppermost mantle along mid-ocean ridges, Earth Planet. Sci. Lett., 1984, vol. 69, pp. 88–106.

    Article  Google Scholar 

  • Dick, H.J.B., Lissenberg, C.J., and Warren, J.M., Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the paleo-MAR from 23°15′ N to 23°45′ N, J. Petrol., 2010, vol. 51, nos. 1–2, pp. 425–467.

    Article  Google Scholar 

  • Escartin, J., Mevel, C., McLeod, C.J., and McCaig, A., Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45′ N, Geochem., Geophys., Geosyst., 2003, vol. 4, no. 8, p. GC000472.

    Article  Google Scholar 

  • Fouquet, Y., Cambon, P., Etoubleau, J., et al., Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit, in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Geophys. Monogr. Ser., 2010, vol. 188, pp. 321–367.

    Article  Google Scholar 

  • Karson, J.A. and Dick, H.J.B., Tectonics of ridge-transform intersections at the Kane Fracture Zone, Mar. Geophys. Res., 1983, vol. 6, pp. 51–98.

    Article  Google Scholar 

  • Mac Leod, C.J., Searle, R.C., Murton, B.J., Casey, J.F., Mallows, C., Unsworth, S.C., Achenbach, K.L., and Harris, M., Life cycle of oceanic core complexes, Earth Planet. Sci. Lett., 2009, vol. 287, pp. 333–344.

    Article  Google Scholar 

  • Majumdar, A.S., King, H.E., John, T., et al., Pseudomorphic replacement of diopside during interaction with (Ni, Mg)Cl2 aqueous solutions, in Goldschmidt Conference Abstracts, 2013, p. 1674.

    Google Scholar 

  • Melson, W.G., Thompson, W.G., and van Andel, T.H., Volcanism and metamorphism in the Mid-Atlantic Ridge, 22° N, J. Geophys. Res., 1968, vol. 73, pp. 5925–5941.

    Article  Google Scholar 

  • Miyashiro, A., Shido, F., and Ewing, M., Composition and origin of serpentinites from the Mid-Atlantic Ridge, 24° N and 30° N latitude, Contrib. Mineral. Petrol., 1969, vol. 23, pp. 117–127.

    Article  Google Scholar 

  • Newton, R.C. and Manning, C.E., Metasomatic phase relations in the system CaO-MgO-SiO2-H2O-NaCl at high temperature and pressure, Int. Geol. Rev., 2000, vol. 42, pp. 152–162.

    Article  Google Scholar 

  • Proceedings of the Ocean Drilling Program, Scientific Results, Detrick, R., Honnorez, J., Bryan, W.B., Juteau, T., et al., Eds., 1990, vol. 106/109.

  • Proceedings of the Ocean Drilling Program, Scientific Results, Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D., Eds., 1997, vol. 153

    Google Scholar 

  • Pertsev, A.N., Bortnikov, N.S., Aranovich, L.Ya., et al., Peridotite-melt interaction under transitional conditions between the spinel and plagioclase facies beneath the Mid-Atlantic Ridge: insight from peridotites at 13° N, Petrology, 2009, vol. 17, no. 2, pp. 124–137.

    Article  Google Scholar 

  • Pertsev, A.N., Bortnikov, N.S., Vlasov, E.A., et al., Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31′ N: associated rocks of the oceanic core complex and their hydrothermal alteration, Geol. Ore Dep., 2012, vol. 54, no. 5, pp. 334–346.

    Article  Google Scholar 

  • Petersen, S., Kuhn, K., Kuhn, T., et al., The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation, Lithos, 2009, vol. 112, pp. 40–56.

    Article  Google Scholar 

  • Piepgras, D.J. and Wasserburg, G.J., Neodymium isotopic variations in seawater, Earth Planet. Sci. Lett., 1980, vol. 50, pp. 128–138.

    Article  Google Scholar 

  • Plank, T. and Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 1998, vol. 145, pp. 325–394.

    Article  Google Scholar 

  • Report of the Cruise 31th of R/V “Professor Logachev”, 2008.

  • Report of the Cruise 34th of R/V “Professor Logachev”, 2011.

  • RIDGE Petrological Data Base, LGEO, 1999.

  • Roden, M.K., Hart, S.R., Frey, F.A., and Melson, W.G., Sr, Nd and Pb isotopic and REE geochemistry of St. Paul’s rocks: the metamorphic and metasomatic development of an alkali basalt mantle source, Contrib. Mineral. Petrol., 1984, vol. 85, no. 4, pp. 376–390.

    Article  Google Scholar 

  • Sharkov, E.V., Shatagin, K.N., Krassivskaya, I.S., et al., Pillow lavas of the Sierra Leone test site, Mid-Atlantic Ridge, 5°-7° N: Sr-Nd isotope systematics, geochemistry, and petrology, Petrology, 2008, vol. 16, no. 4, pp. 335–352.

    Article  Google Scholar 

  • Sharp, Z.D. and Barnes, J.D., Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones, Earth Planet. Sci. Lett., 2004, vol. 226, pp. 243–254.

    Article  Google Scholar 

  • Silantyev, S.A., Origin conditions of the Mid-Atlantic Ridge plutonic complex at 13°-17° N, Petrology, 1998, vol. 6, no. 4, pp. 351–387.

    Google Scholar 

  • Silant’ev, S.A., Variations in the geochemical and isotopic characteristics of residual peridotites along the Mid-Atlantic Ridge as a function of the nature of the mantle magmatic sources, Petrology, 2003, vol. 11, no. 4, pp. 305–326.

    Google Scholar 

  • Silantyev, S.A., Danyushevsky, L.V., Plechova, A.A., et al., Geochemical and isotopic signatures of magmatic products in the MAR Rift valley at 12°49′-17°23′ N and 29°59′-33°41′ N: evidence of two contrasting sources of the parental melts, Petrology, 2008, vol. 16, no. 1, pp. 36–62.

    Article  Google Scholar 

  • Silantyev, S.A., Mironenko, M.V., and Novoselov, A.A., Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell, Petrology, 2009, vol. 17, no. 2, pp. 138–157.

    Article  Google Scholar 

  • Silantyev, S.A., Aranovich, L.Ya., and Bortnikov, N.S., Oceanic plagiogranites as a result of interaction between magmatic and hydrothermal systems in the slow-spreading mid-ocean ridges, Petrology, 2010, vol. 18, no. 4, pp. 369–383.

    Article  Google Scholar 

  • Silant’ev, S.A., Krasnova, E.A., Kannat, M., et al., Peridotite-gabbro-trondhjemite association of the Mid-Atlantic Ridge between 12°58′ and 14°45′ N: Ashadze and Logachev hydrothermal vent fields, Geochem. Int., 2011, vol. 49, no. 4. 323–354.

    Article  Google Scholar 

  • Silantyev, S.A., Bogdanovskii, O.G., Fedorov, P.I., et al. Intraplate magmatism of the De Long islands: a response to the propagation of the ultraslow-spreading Gakkel Ridge into the passive continental margin in the Laptev Sea, Russ. J. Earth Sci., 2004, vol. 6, no. 3, pp. 1–31.

    Article  Google Scholar 

  • Smithsonian Volcanic Glass Data File, 2000 — http://www.nmnh.si.edu/minsci/research/glass/index.htm

  • Snow, J.E. and Reisberg, L., Os isotopic systematics of MORB mantle: results from altered abyssal peridotites, Earth Planet. Sci. Lett., 1995, vol. 133, pp. 411–421.

    Article  Google Scholar 

  • Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. London, Sp. Publ., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  • Tachikawa, K., Jeandel, C., and Roy-Barman, M., A new approach to the Nd residence time in the ocean: the role of atmospheric inputs, Earth Planet. Sci. Lett., 1999, vol. 170, pp. 433–446.

    Article  Google Scholar 

  • Tucholke, B.E., Lin, J., and Kleinrock, M.C., Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic ridge, J. Geophys. Res., 1998, vol. 103, no. B5, pp. 9857–9866.

    Article  Google Scholar 

  • Workman, R.K. and Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett., 2005, vol. 231, nos. 1–2, pp. 53–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Silantyev.

Additional information

Original Russian Text © S.A. Silantyev, N.S. Bortnikov, K.N. Shatagin, Ya.V. Bychkova, E.A. Krasnova, V.E. Bel’tenev, 2015, published in Petrologiya, 2015, Vol. 23, No. 1, pp. 3–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silantyev, S.A., Bortnikov, N.S., Shatagin, K.N. et al. Peridotite-basalt association at MAR between 19°42′ and 19°59′ N: Evaluation of petrogenetic conditions and material balance during hydrothermal transformation of the oceanic crust. Petrology 23, 1–21 (2015). https://doi.org/10.1134/S0869591115010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591115010051

Keywords

Navigation