Skip to main content
Log in

Brain–computer interface: The first experience of clinical use in Russia

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Motor imagery can stimulate the same neuroplastic mechanisms of the brain as their actual execution. The motor imagery can be controlled via the brain–computer interface (BCI), which transforms the EEG signals of the brain appearing during the motor imagery into commands for the external device. The results of the two-stage study of the application of a non-invasive BCI for the rehabilitation of patients with marked hemiparesis resulted from a local brain injury. We have shown that the learning to manage the BCI does not depend on the duration of disease, localization of the damaged site, and the severity of neurological deficit. The results of the first stage of the study carried out in a group of 36 patients showed that the rehabilitation therapy was more effective in the group that was trained to manage the BCI (the ARAT score improved from 1 [0; 2] to 5 [0; 16], p = 0.012 in the BCI group; no significant improvement was detected in the control group). In the second phase of the study, 19 patients participated in the testing of a BCI–exoskeleton system. Rehabilitation based on this technology led to an improvement of the motor function of an arm from 2 [0; 37] to 4 [1; 45.5], p = 0.005, according to the ARAT scale, and from 72 [63; 110] to 79 [68; 115], p = 0.005, according to the Fugl-Meyer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolas-Alonso, L.F. and Gomez-Gil, J., Brain computer interfaces, a review, Sensors (Basel), 2012, vol. 12, no. 2, p. 1211.

    Article  Google Scholar 

  2. Daly, J.J. and Wolpaw, J.R., Brain-computer interfaces in neurological rehabilitation, Lancet Neurol., 2008, vol. 7, no. 11, p. 1032.

    Article  PubMed  Google Scholar 

  3. Mokienko, O.A., Chernikova, L.A., and Frolov, A.A., Brain-computer interface as a new technology of neuroreabilitation, Ann. Clin. Exp. Neurol., 2011, vol. 5, no. 3, p. 46.

    Google Scholar 

  4. Vidal, J.J., Toward direct brain-computer communication, Ann. Rev. Biophys. Bioeng., 1973, vol. 2, pp. 157.

    Article  CAS  Google Scholar 

  5. Pfurtscheller, G. and Aranibar, A., Evaluation of eventrelated desynchronization (ERD) preceding and following voluntary self-paced movement, EEG Clin. Neurophysiol., 1979, vol. 46, no. 2, p. 138.

    Article  CAS  Google Scholar 

  6. McFarland, D.J., Miner, L.A., Vaughan, T.M., and Wolpaw, J.R., Mu and beta rhythm topographies during motor imagery and actual movements, Brain Topogr., 2000, vol. 12, no. 3, p. 177.

    Article  CAS  PubMed  Google Scholar 

  7. Hétu, S., Grégoire, M., Saimpont, A., et al., The neural network of motor imagery: an ALE meta-analysis, Neurosci. Biobehav. Rev., 2013, vol. 37, no. 5, p. 930.

    Article  PubMed  Google Scholar 

  8. Shih, J.J., Krusienski, D.J., and Wolpaw, J.R., Braincomputer interfaces in medicine, Mayo Clin. Proc., 2012, vol. 87, no. 3, p. 268.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mokienko, O.A., Chervyakov, A.V., Kulikova, S., et al., Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects, Front. Comput. Neurosci., 2013, vol. 7, pp. 168.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Soekadar, S.R., Birbaumer, N., Slutzky, M.W., et al., Brain-machine interfaces in neurorehabilitation of stroke, Neurobiol. Dis., 2014. vol. 83, p. 172. doi 10.1016/j.nbd.2014.11.025.

    Article  PubMed  Google Scholar 

  11. Langhorne, P., Bernhardt, J., and Kwakkel, G., Stroke rehabilitation, Lancet, 2011, vol. 377, no. 9778, p. 1693.

    Article  PubMed  Google Scholar 

  12. Chiew, M., LaConte, S., and Graham, S., Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery, NeuroImage, 2012, vol. 61, pp. 21.

    Article  PubMed  Google Scholar 

  13. Chernikova, L.A., Robotic systems in neurorehabilitation, Ann. Klin. Eksp. Nevrol., 2009, vol. 3, no. 3, p. 30.

    Google Scholar 

  14. Sidyakina, I.V., Shapovalenko, T.V., and Lyadov, K.V., Mechanisms of neuroplastisity and rehabilitation in hyperacute period of stroke, Ann. Klin. Eksp. Nevrol., 2013, vol. 7, no. 1, p. 52.

    Google Scholar 

  15. Kohavi, R. and Provost, F., Glossary of terms. Special issue of applications of machine learning and the knowledge discovery process, Mach. Learn., 1998, vol. 30, pp. 271.

    Article  Google Scholar 

  16. Buch, E., Weber, C., Cohen, L.G., et al., Think to move: A neuromagnetic brain-computer interface (BCI) system for chronic stroke, Stroke, 2008, vol. 39, no. 3, p. 910.

    Article  PubMed  Google Scholar 

  17. Buch, E.R., Modir Shanechi, A., Fourkas, A.A. et al., Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke, Brain, 2012, vol. 135, pt. 2, p. 596.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frolov, A.A., Gusek, G., Bobrov, P.D., et al., Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery, Hum. Physiol., 2014, vol. 40, no. 3, p. 273.

    Article  Google Scholar 

  19. Ang, K.K., Chua, K.S., Phua, K.S., et al., A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke, Clin. EEG Neurosci., 2014, vol. 46, no. 4, p. 310. doi 10.1177/1550059414522229.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Mokienko.

Additional information

Original Russian Text © O.A. Mokienko, R.Kh. Lyukmanov, L.A. Chernikova, N.A. Suponeva, M.A. Piradov, A.A. Frolov, 2016, published in Fiziologiya Cheloveka, 2016, Vol. 42, No. 1, pp. 31–39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokienko, O.A., Lyukmanov, R.K., Chernikova, L.A. et al. Brain–computer interface: The first experience of clinical use in Russia. Hum Physiol 42, 24–31 (2016). https://doi.org/10.1134/S0362119716010126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119716010126

Keywords

Navigation