Skip to main content
Log in

Flat Friedmann cosmologies with stiff fluid in Einstein–Cartan theory

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Flat Friedmann cosmologies with stiff fluid are considered in the framework of the Einstein–Cartan theory. The version of this theory which simultaneously takes into consideration two sources of torsion, namely, a perfect fluid with the vacuum equation of state and a nonminimally coupled scalar field, is studied. It is demonstrated that, for bouncing models, phantom cosmologies with and without a Big Rip singularity are possible. Singular expanding models are presented where the early stages are dominated by a scalar-torsion field which behaves as an ultrastiff fluid, while the late stages are dominated by a perfect fluid which causes a de Sitter asymptotic. Some cosmological consequences of two sources of torsion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Padmanabham, Phys. Rep. 380, 335 (2003).

    Google Scholar 

  2. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 599 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Li, X-D. Li, S. Wang, and Y. Wand, Commun. Theor. Phys. 56, 525 (2011); arXiv: 1103.5870.

    Article  ADS  Google Scholar 

  5. K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  6. E. Cartan, Ann. Ec. Norm. Suppl. 40, 325 (1923).

    MathSciNet  Google Scholar 

  7. E. Cartan, Ann. Ec. Norm. Suppl. 41, 1 (1924).

    MathSciNet  Google Scholar 

  8. E. Cartan, Ann. Ec. Norm. Suppl. 42, 17 (1925).

    MathSciNet  Google Scholar 

  9. F. W. Hehl and Yu. N. Obukhov, Ann. Fond. Louis de Broglie 32, 157 (2007); arXiv: 0711.1535.

    MathSciNet  Google Scholar 

  10. F. W. Hehl, P. von der Heyde, G. D. Kerlik, and J. M. Nester, Rev. Mod. Phys. 48, 393 (1976).

    Article  ADS  Google Scholar 

  11. A. Trautman, in Encyclopedia of Mathematical Physics, Ed. by J.-P. Francoise, G. L. Naber, and S. T. Tsou (Elsevier, Oxford, 2006), pp. 189–195.

  12. P. Baekler and F. W. Hehl, Class. Quantum Grav. 28, 215017 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  13. Ya. B. Zel’dovich, Sov. Phys. JETP 14, 1143 (1962).

    Google Scholar 

  14. C. Brans and R. H. Dicke, Phys.Rev. 124, 925 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Carolini, J. A. Leach, S. Capozziello, and P. K. S. Dunsby, Class. Quantum Grav. 25, 035008 (2008); gr-qc/0701009.

    Article  ADS  Google Scholar 

  16. E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley,Mento Park, CA 1990).

    MATH  Google Scholar 

  17. A. J. Accioly, Lett. Nuovo Cim. 44, 48 (1985).

    Article  ADS  Google Scholar 

  18. L. Amendola, Phys. Lett. B 301, 175 (1993); grqc/9302010.

    Article  ADS  MathSciNet  Google Scholar 

  19. V. Faraoni, Phys. Rev. D 53, 6817 (1996); astroph/9602111.

    Article  ADS  Google Scholar 

  20. K. A. Bronnikov, Acta Phys. Polon. B 4, 251 (1973).

    MathSciNet  Google Scholar 

  21. K. A. Bronnikov and A.M. Galiakhmetov, Grav. Cosmol. 21, 283 (2015); arXiv: 1508.01114.

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Tsujikawa, Phys. Rev. D 63, 043512 (2000); hepph/0004088

    Article  ADS  Google Scholar 

  23. S. Koh, S. P. Kim, and D. J. Song, Phys. Rev. D 72, 043523 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, JCAP 0609, 016 (2006).

    Article  ADS  Google Scholar 

  25. M. Szydlowsky and O. Hrycyna, JCAP 0901, 039 (2009); arXiv: 0811.1493.

    Article  ADS  Google Scholar 

  26. A. Yu. Kamenshchik, A. Tronconi, and G. Venturi, Phys. Lett. B 713, 358 (2012).

    Article  ADS  Google Scholar 

  27. A. O. Barvinsky, A. Yu. Kamenshchik and A. A. Starobinsky, JCAP 0811, 021 (2008); arXiv: 0809.2104

    Article  ADS  Google Scholar 

  28. F. Bezrukov and M. Shaposhnikov, JHEP 0907, 089 (2009); arXiv: 0904.1537.

    Article  ADS  Google Scholar 

  29. A. O. Barvinsky, A. Yu. Kamenshchik, A. A. Starobinsky, and C. Steinwachs, JCAP 0912, 003 (2009); arXiv: 0904.1698.

    Article  ADS  Google Scholar 

  30. A. M. Galiakhmetov, Class. Quantum Grav. 27, 055008 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. M. Galiakhmetov, Class. Quantum Grav. 28, 105013 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. M. Galiakhmetov, Gen. Rel. Grav. 44, 1043 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  33. A. M. Galiakhmetov, Gen. Rel. Grav. 45, 275 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. M. Galiakhmetov, Int. J. Mod. Phys. D 21 125001 (2012).

    Article  MathSciNet  Google Scholar 

  35. A. M. Galiakhmetov, Int. J. Theor. Phys. 52, 765 (2013).

    Article  MathSciNet  Google Scholar 

  36. I. Ya. Arefeva, A. S. Koshelev, and S. Yu. Vernov, Theor. Math. Phys. 148, 895 (2006); astroph/0412619.

    Article  MathSciNet  Google Scholar 

  37. M. D. Pollock, Phys. Lett. B 215, 635 (1988).

    Article  ADS  Google Scholar 

  38. S. W. Hawking and T. Hertog, Phys. Rev. D 65, 103515 (2002); hep-ph/0107088.

    Article  ADS  MathSciNet  Google Scholar 

  39. A. V. Astashenok, S. Nojiri, S. D. Odintsov, and A. V. Yurov, Phys. Lett. B 709, 396 (2012); arXiv: 1201.4056.

    Article  ADS  Google Scholar 

  40. H. Ellis, J.Math. Phys. 14, 104 (1973).

    Article  ADS  Google Scholar 

  41. K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 251101(2006); gr-qc/0511109.

    Article  ADS  MathSciNet  Google Scholar 

  42. S.V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, Class. Quantum Grav. 29, 245006 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. M. Galiakhmetov, Russ. Phys. J. 44, 1316 (2001).

    Article  Google Scholar 

  44. V. G. Krechet and V. N. Melnikov, Russ. Phys. J. 34, 147 (1991).

    Google Scholar 

  45. V. G. Krechet and D. V. Sadovnikov, Grav. Cosmol. 3, 133 (1997).

    ADS  Google Scholar 

  46. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity (IOP Publishing, Bristol, 1992).

    Google Scholar 

  47. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Phys. Lett. B 162, 92 (1985).

    Article  ADS  Google Scholar 

  48. I. L. Buchbinder and S. D. Odintsov, Acta Phys. Pol. B 18, 237 (1987).

    Google Scholar 

  49. P. H. Frampton, K. J. Ludwick, and R. J. Scherer, Phys. Rev. D 85, 083001 (2012); arXiv: 1112.2964.

    Article  ADS  Google Scholar 

  50. R. R. Cadwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003); astroph/0302506.

    Article  ADS  Google Scholar 

  51. C. Catoën and M. Visser, Class. Quantum Grav. 22, 4913 (2005); gr-qc/0508045.

    Article  ADS  Google Scholar 

  52. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001); hep-th/0103239.

    Article  ADS  MathSciNet  Google Scholar 

  53. P. J. Steinhardt and N. Turok, Phys. Rev. D 65, 126003 (2002); hep-th/0111098.

    Article  ADS  MathSciNet  Google Scholar 

  54. J. D. Barrow and K. Yamamoto, Phys. Rev. D 82, 063516 (2010); arXiv: 1004.4767.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Galiakhmetov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiakhmetov, A.M. Flat Friedmann cosmologies with stiff fluid in Einstein–Cartan theory. Gravit. Cosmol. 22, 36–43 (2016). https://doi.org/10.1134/S0202289316010060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316010060

Keywords

Navigation