Skip to main content
Log in

Multidimensional gravity, flux and black brane solutions governed by polynomials

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

Two families of composite black brane solutions are overviewed, fluxbrane and black brane ones, in a model with scalar fields and fields of forms. The metric of any solution is defined on a manifold which contains a product of several Ricci-flat “internal” spaces. The solutions are governed by moduli functions \(\mathcal{H}_s \) (for fluxbranes) and H s (for black branes), obeying nonlinear differential equations with certain boundary conditions. Themaster equations for \(\mathcal{H}_s \) and H s are equivalent to Toda-like equations and depend on a nondegenerate matrix A related to brane intersection rules. The functions H s and \(\mathcal{H}_s \), as was conjectured and confirmed (at least partly) earlier, should be polynomials in proper variables if A is a Cartan matrix of some semisimple finite-dimensional Lie algebra. The fluxbrane polynomials \(\mathcal{H}_s \) were shown to be used for the construction of black brane polynomials H s . This approach is illustrated by examples of nonextremal electric black p-brane solutions related to Lie algebras A 2, C 2, and G 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. N. Melnikov, Multidimensional Classical and Quantum Cosmology and Gravitation, Exact Solutions and Variations of Constants. CBPF-NF-051/93, Rio de Janeiro, 1993; V. N. Melnikov, in: “Cosmology and Gravitation”, ed. M. Novello, Editions Frontieres, Singapore, 1994, p. 147.

    Google Scholar 

  2. V. N. Melnikov, Multidimensional Cosmology and Gravitation, CBPF-MO-002/95, Rio de Janeiro, 1995, 210 p.; V. N. Melnikov, In: Cosmology and Gravitation. II, ed. M. Novello, Editions Frontieres, Singapore, 1996, p. 465.

    Google Scholar 

  3. V. N. Melnikov, Exact Solutions in Multidimensional Gravity and Cosmology III. CBPF-MO-03/02, Rio de Janeiro, 2002, 297 p.

    Google Scholar 

  4. K. P. Staniukovich and V. N. Melnikov, Hydrodynamics, Fields and Constants in the Theory of Gravitation. Energoatomizdat, Moscow, 1983, 256 pp. (in Russian); English version of a part of the book: V. N. Melnikov, Fields and Constants in the Theory of Gravitation. CBPF-MO-02/02, Rio de Janeiro, 2002, 134 p.

    Google Scholar 

  5. V. N. Melnikov, Int. J. Theor. Phys. 33, 1569 (1994).

    Article  Google Scholar 

  6. V. de Sabbata, V. N. Melnikov and P. I. Pronin, Prog. Theor. Phys. 88, 623 (1992).

    Article  ADS  Google Scholar 

  7. V. N. Melnikov. In: Gravitational Measurements, Fundamental Metrology and Constants, eds. V. de Sabbata and V. N. Melnikov (Kluwer Academic Publ., Dordtrecht, 1988), p. 283.

  8. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 19, 171 (2013); arXiv: 1306.6521.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. V. D. Ivashchuk and V. N. Melnikov, Eur. Phys. J. C 74: 2805, 1 (2014); arXiv: 1310.4451.

    Article  ADS  Google Scholar 

  10. V. N. Melnikov, Gravity as a Key Problem of the Millenium. Proc. 2000 NASA/JPL Conference on Fundamental Physics in Microgravity, CD-version, NASA Document D-21522, 2001, p.4.1–4.17, Solvang, CA, USA; gr-qc/0007067.

    Google Scholar 

  11. V. N. Melnikov, Gravitation and Cosmology as Key Problems of the Millennium. Albert Einstein Century International Conference. AIP Conference Proceedings. Eds. Jean-Michel Alimi and Andre Fuzfa, 2006, No. 861, p. 109.

    Google Scholar 

  12. R. Blumenhagen, M. Cvetic, P. Langacker, G. Shiu, Ann. Rev. Nucl. Part. Sci. 55, 71 (2005); hep-th/0502005.

    Article  ADS  Google Scholar 

  13. G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B 287, 717 (1987); hep-th/0109093.

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Gibbons and K. Maeda, Nucl. Phys. B 298, 741 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Dowker, J. P. Gauntlett, G. W. Gibbons, and G. T. Horowitz, Phys. Rev. D 53, 7115 (1996); hep-th/9512154.

    Article  ADS  MathSciNet  Google Scholar 

  16. D. V. Gal’tsov and O. A. Rytchkov, Phys. Rev. D 58, 122001 (1998); hep-th/9801180.

    Article  ADS  MathSciNet  Google Scholar 

  17. C.-M. Chen, D.V. Gal’tsov, and S. A. Sharakin, Grav. Cosmol. 5, 45 (1999); hep-th/9908132.

    ADS  MATH  MathSciNet  Google Scholar 

  18. M. S. Costa and M. Gutperle, JHEP 0103, 027 (2001); hep-th/0012072.

    Article  ADS  MathSciNet  Google Scholar 

  19. P. M. Saffin, Phys. Rev. D 64, 024014 (2001); gr-qc/0104014.

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Gutperle and A. Strominger, JHEP 0106, 035 (2001); hep-th/0104136.

    Article  ADS  MathSciNet  Google Scholar 

  21. C. M. Chen, D. V. Gal’tsov, and P. M. Saffin, Phys. Rev. D 65, 084004 (2002); hep-th/0110164.

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Emparan and M. Gutperle, JHEP 0112, 023 (2001); hep-th/0111177.

    Article  ADS  MathSciNet  Google Scholar 

  23. V. D. Ivashchuk, Class. Quantum Grav. 19, 3033 (2002); hep-th/0202022.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. M. A. Melvin, Phys. Lett. 8, 65 (1964).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. I.S. Goncharenko, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 13, 262 (2007); math-ph/0612079.

    ADS  MATH  MathSciNet  Google Scholar 

  26. V. D. Ivashchuk, Class. Quantum Grav. 20, 261 (2003); hep-th/0208101.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. K. A. Bronnikov, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 3, 203 (1997); gr-qc/9710054.

    ADS  MATH  Google Scholar 

  28. K. A. Bronnikov, Grav. Cosmol. 4, 49 (1998); hep-th/9710207.

    ADS  MATH  MathSciNet  Google Scholar 

  29. S. Cotsakis, V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 5, 52 (1999); gr-qc/9902148.

    ADS  MATH  MathSciNet  Google Scholar 

  30. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 5, 313 (1999); gr-qc/0002085.

    ADS  MATH  MathSciNet  Google Scholar 

  31. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 6, 27 (2000); hep-th/9910041.

    ADS  MATH  MathSciNet  Google Scholar 

  32. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 17, 2073 (2000); math-ph/0002048.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. M. A. Grebeniuk, V. D. Ivashchuk, and S.-W. Kim, J. Math. Phys. 43, 6016 (2002); hep-th/0111219.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. M.A. Grebeniuk, V. D. Ivashchuk, and V. N. Melnikov, Phys. Lett. B 543, 98 (2002); hep-th/0208083.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 18, R87 (2001); hep-th/0110274.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. M. Cvetic and A. Tseytlin, Nucl. Phys. B 478, 181 (1996); hep-th/9606033.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. I. Ya. Aref’eva, M. G. Ivanov, and I.V. Volovich, Phys. Lett. B 406, 44 (1997); hep-th/9702079.

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Ohta, Phys. Lett. B 403, 218 (1997); hep-th/9702164.

    Article  ADS  MathSciNet  Google Scholar 

  39. V. D. Ivashchuk and V. N. Melnikov, J. Math. Phys. 39, 2866 (1998); hep-th/9708157.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. V. D. Ivashchuk and S.-W. Kim, J. Math. Phys. 41, 444 (2000); hep-th/9907019.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. M. A. Olshanetsky and A. M. Perelomov, Invent. Math. 54, 261 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. B. Kostant, Adv. inMath. 34, 195 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Anderson, J. Math. Phys. 37, 1349 (1996); hep-th/9507092.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. A. A. Golubtsova and V. D. Ivashchuk, On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras, arXiv: 0804.0757.

  45. A. A. Golubtsova and V. D. Ivashchuk, Grav. Cosmol. 15, 144 (2009); arXiv: 1009.3667.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. H. Lü and W. Yang, SL(n, R)-Toda Black Holes, arXiv: 1307.2305.

  47. J. Fuchs and C. Schweigert, Symmetries, Lie algebras and Representations. A graduate course for physicists (Cambridge University Press, Cambridge, 1997).

    MATH  Google Scholar 

  48. H. Lü, J. Maharana, S. Mukherji, and C. N. Pope, Phys. Rev. D 57, 2219 (1997); hep-th/9707182.

    Article  Google Scholar 

  49. V.D. Ivashchuk, Black brane solutions governed by fluxbrane polynomials, arXiv: 1401.0215.

  50. V. D. Ivashchuk, S. A. Kononogov and V. N. Melnikov, Grav. Cosmol. 14, 235 (2008); arXiv: 0901.0025.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. A. A. Golubtsova, Grav. Cosmol. 16, 298 (2010).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Ivashchuk.

Additional information

Based on a plenary talk given at the 11th International Conference on Gravitation, Astrophysica and Cosmology of Asia-Pacific Countries (ICGAC-11), October 1–5, 2013, Almaty, Kazakhstan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashchuk, V.D., Melnikov, V.N. Multidimensional gravity, flux and black brane solutions governed by polynomials. Gravit. Cosmol. 20, 182–189 (2014). https://doi.org/10.1134/S0202289314030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289314030086

Keywords

Navigation