Skip to main content
Log in

The quantum gravity Immirzi parameter—A general physical and topological interpretation

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The paper argues that the Immirzi crucial free parameter of the spin networks theory of quantum gravity represents a definite quantum entanglement correction. In turn, this entanglement may be explained as a consequence of zero measure non-classical topology of the relevant geometrical-topological setting and the associated fiber bundle symmetry group. In particular, we show that the Immirzi parameter may be interpreted as a three-particle probability for quantum entanglement akin to Hardy’s probability for two quantum particles. We give the exact limiting value of the Immirzi parameter to be γ c = ϕ 6 = 0.05572809, where \(\varphi = (\sqrt 5 - 1)/2\). Thus, while Hardy’s quantum entanglement was found exactly using Dirac’s conventional quantum mechanics and confirmed experimentally to be P (Hardy) = ϕ 5 = 0.090169943, we have a similar situation for the free parameter of loop quantum gravity, namely, that

$\gamma = \log 2/(\pi \sqrt 3 ) = 0.055322 \Rightarrow \varphi ^6 = 0.055728$

. This result will be shown to have far-reaching consequences for quantum physics and cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe (Jonathan Cape, London, 2004).

    Google Scholar 

  2. C. Rovelli, Quantum Gravity (Cambridge Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  3. A. Vilenkin, Phys. Rev. D 41, 3038 (1990).

    Article  ADS  Google Scholar 

  4. C. Rovelli and T. Thiemann, The Immirzi parameter in quantum general relativity, gr-qc/9705059.

  5. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  6. M. S. El Naschie, Chaos, Solitons and Fractals 27(2), 297 (2006).

    Article  ADS  MATH  Google Scholar 

  7. M. S. El Naschie, J. of Quantum Info. Sci., 1(2), 50 (2011). Free access online: Sept. 2011, (http://www.SCRIP.org/journal/jqis (Scientific Research).

    Article  Google Scholar 

  8. L. Hardy, Phys. Rev. Lett. 71(11), 1665 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Ji-Huan He et al, Nonlinear Sci. Lett B 1(2), 45 (2011).

    Google Scholar 

  10. L. Marek-Crnjac, Phys. Res. Int., Article ID 874302, doi: 10.1155/2011/874302 (2011).

    Google Scholar 

  11. M.S. El Naschie, Chaos, Solitons and Fractals 41(5), 2635 (2009).

    Article  ADS  Google Scholar 

  12. M.S. El Naschie, Chaos, Solitons and Fractals 19(1), 209 (2004).

    Article  ADS  MATH  Google Scholar 

  13. T. Palmer, Proc. Roy. Soc. A. 465 (2009).

  14. G. Ord: Fractal space-time, J. Phys. A: Math. Gen. 16, 1869 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Amendola and S. Tsujikawa, Dark energy: Theory and Observations (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  16. L. Sigalotti and A. Mejias, Chaos, Solitons and Fractals 30(3), 521 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S. Hendi and M. Sharif Zadeh, J. Theor. Phys. 1, 37 (2012) (IAU Publishing-ISSN 2251-855).

    Google Scholar 

  18. M. S. El Naschie, Chaos, Solitons and Fractals 35(1), 202 (2008).

    Article  ADS  Google Scholar 

  19. M. S. El Naschie, Chaos, Solitons and Fractals 29(4), 871 (2006).

    Article  ADS  Google Scholar 

  20. M. S. El Naschie, Chaos, Solitons and Fractals 26(1), 13 (2005).

    Article  ADS  MATH  Google Scholar 

  21. L. Marek-Crnjac, Chaos, Solitons and Fractals 34(3), 677 (2007).

    Article  ADS  MATH  Google Scholar 

  22. M. S. El Naschie, Chaos, Solitons and Fractals 41(4), 1569 (2009).

    Article  ADS  Google Scholar 

  23. M. S. El Naschie, Chaos, Solitons and Fractals 36(1), 1 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Elokaby, Chaos, Solitons and Fractals 42(1), 303 (2009).

    Article  ADS  Google Scholar 

  25. K. G. Schlesinger: Towards Quantum Mathematics. Part I: From Quantum Sets Theory to University Quantum Mechanics (Erwin Schodinger Ins for Math. Phys, 1998; Preprint Vienna, Austria ESI 537, available via http://www.esi.ac.at).

    Google Scholar 

  26. D. R. Finkelstein, Quantum Relativity (Springer, Berlin, 1996).

    Book  MATH  Google Scholar 

  27. M. S. El Naschie, Chaos, Solitons and Fractals 29(4), 816 (2006).

    Article  ADS  Google Scholar 

  28. M. S. El Naschie, Chaos, Solitons and Fractals 29(4), 845 (2006).

    Article  ADS  Google Scholar 

  29. A. Connes: Noncommutative Geometry (Academic Press, San Diego, 1994).

    MATH  Google Scholar 

  30. Yu. Gnedin, A. Grib, and V. Mastepanenko, in: Proc. of the Third Alexander Friedmann Int. Seminar on Gravitation and Cosmology (Friedmann Lab. Pub., St. Petersberg, 1995).

    Google Scholar 

  31. A. Vilenkin and E. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. El Naschie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Naschie, M.S. The quantum gravity Immirzi parameter—A general physical and topological interpretation. Gravit. Cosmol. 19, 151–155 (2013). https://doi.org/10.1134/S0202289313030031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289313030031

Keywords

Navigation