Skip to main content
Log in

Causal cones, cone preserving transformations and causal structure in special and general relativity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We present a short review of a geometric and algebraic approach to causal cones and describe cone preserving transformations and their relationship with the causal structure related to special and general relativity. We describe Lie groups, especially matrix Lie groups, homogeneous and symmetric spaces and causal cones and certain implications of these concepts in special and general relativity, related to causal structure and topology of space-time. We compare and contrast the results on causal relations with those in the literature for general space-times and compare these relations with K-causal maps. We also describe causal orientations and their implications for space-time topology and discuss some more topologies on space-time which arise as an application of domain theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. D. Alexandrov, Annali di Mathematica Pura et Aplicata 103, 229 (1957).

    Article  MathSciNet  Google Scholar 

  2. A. D. Alexandrov, Uspekhi Math. Nauk 5(3), 187 (1950).

    Google Scholar 

  3. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time (Cambridge Univ Press, 1973).

    Book  MATH  Google Scholar 

  4. R. Wald, General Relativity (Univ of Chicago Press, 1984).

    Book  MATH  Google Scholar 

  5. P. S. Joshi, Global Aspects in Gravitation and Cosmology (Oxford Science Publications, 1993).

    MATH  Google Scholar 

  6. F. Dowker, J. Henson, and R. Sorkin, Mod. Phys. Lett. A19, 1829 (2004).

    MathSciNet  ADS  Google Scholar 

  7. R. D. Sorkin and E. Woolgar, Class. Quantum Grav. 3, 1971 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Janardhan and R. V. Saraykar, Pramana-J. of Physics 70, 587 (2008).

    Article  ADS  Google Scholar 

  9. S. Janardhan and R. V. Saraykar, Int. J. Math. Sci. and Engg. Appls. 4(IV), 47 (2010).

    MathSciNet  Google Scholar 

  10. E. Minguzzi, Comm. Math. Phys. 290(1), 239 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E. Minguzzi, Commun. Math. Phys, 288(3) 801 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. K. Martin and P. Panangaden, Commun. Math. Phys. 267, 563 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. V. A. Truong and L. Tuncel, Mathematical Programming 100(2), 295 (2002).

    Article  MathSciNet  Google Scholar 

  14. R. D. Luce and R. Raifa, Games and Decisions: Introduction and Critical Survey (Dover, New York, 1989).

    MATH  Google Scholar 

  15. V. Kreinovich and O. Kosheleva, Int. J. Theor. Phys. 47(4), 1083 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Kreinovich and O. Kosheleva, Theoretical Computer Science 405(1–2), 50 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Minguzzi and M. Sanchez, ESI Lect. Math. Phys. 299 (2006).

    Google Scholar 

  18. R. Gilmore, Lie Groups, Physics, and Geometry (Cambridge University Press, 2008)

    Book  MATH  Google Scholar 

  19. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, 1978)

    MATH  Google Scholar 

  20. J. A. Wolf, Spaces of Constant Curvature (McGraw-Hill, 1967).

    MATH  Google Scholar 

  21. A. Knapp, Lie Groups Beyond an Introduction (Birkhauser, 2002).

    MATH  Google Scholar 

  22. L. Fuchs, Partially Ordered Algebraic Systems (Pergamon Press, 1963).

    MATH  Google Scholar 

  23. J. Hilgert and K. H. Neeb, Japan. J. Math. 21, 117 (1995).

    MathSciNet  MATH  Google Scholar 

  24. I. Chajda and S. Hoskava, Miskolc Mathematical Notes 6(2), 147 (2005).

    MathSciNet  MATH  Google Scholar 

  25. J. A. Lester, Proc. Cambridge Math. Soc. 81, 455 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. A. Lester, Annals of Discrete Mathematics, 18, 567 (1983).

    MathSciNet  MATH  Google Scholar 

  27. F. Zapata and V. Kreinovich, Studia Logica 87, 1 (2011).

    Google Scholar 

  28. C. Gheorghe and E. Mihul, Commun. Math. Phys. 14, 165 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Penrose, Techniques of Differential Topology in Relativity (AMS Colloquium Publications, 1972).

    Book  MATH  Google Scholar 

  30. A. Garcia-Parrado and J. M. Senovilla, grqc/0308091.

  31. A. Garcia-Parrado and J. M. Senovilla, Class. Quantum Grav. 20, 625 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S. W. Hawking and R. K. Sachs, Commun. Math. Phys. 35, 287 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  33. H. F. Dowkar, R. S. Garcia, and S. Surya, Class. Quantum Grav. 17, 697 (2009).

    Article  ADS  Google Scholar 

  34. E. C. Zeeman, J. Math. Phys. 5, 490 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. H. J. Borchers and G. C. Hegerfeldt, Commun. Math. Phys. 28, 259 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. M. Rainer, J.Math. Phys. 40, 6589 (1999); Erratum: ibid, 41, 3303 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S. Abramsky and A. Jung, Domain Theory, in Handbook of Logic in Computer Science, Ed. by S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Vol. III (Oxford University Press, 1994).

  38. A. Krasinski, Inhomogeneous Cosmological Models (Cambridge Univ. Press, New Ed., 2006).

    Google Scholar 

  39. B. Carter, Gen. Rel. Grav. 1, 349 (1971).

    Article  ADS  MATH  Google Scholar 

  40. E. H. Kronheimer, Gen. Rel. Grav. 1, 261 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujatha Janardhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janardhan, S., Saraykar, R.V. Causal cones, cone preserving transformations and causal structure in special and general relativity. Gravit. Cosmol. 19, 42–53 (2013). https://doi.org/10.1134/S0202289313010052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289313010052

Keywords

Navigation