Skip to main content
Log in

Swift J164449.3+573451 event: Generation in collapsing star cluster?

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We discuss the multiband energy release in a model of a collapsing galactic nucleus, and we try to interpret the unique super-long cosmic gamma-ray event Swift J164449.3+573451 (GRB 110328A by early classification) in this scenario. Neutron stars and stellar-mass black holes can form evolutionary a compact self-gravitating subsystem in the galactic center. Collisions and merges of these stellar remnants during an avalanche contraction and collapse of the cluster core can produce powerful events in different bands due to several mechanisms. Collisions of neutron stars and stellar-mass black holes can generate gamma-ray bursts (GRBs) similar to the ordinarymodels of short GRB origin. The bright peaks during the first two days may also be a consequence of multiple matter supply (due to matter release in the collisions) and accretion onto the forming supermassive black hole. Numerous smaller peaks and later quasi-steady radiation can arise from gravitational lensing, late accretion of gas onto the supermassive black hole, and from particle acceleration by shock waves. Even if this model will not reproduce exactly all the Swift J164449.3+573451 properties in future observations, such collapses of galactic nuclei can be available for detection in other events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Levan at al., Science 333, 199 (2011).

    Article  ADS  Google Scholar 

  2. Ya. Yu. Tikhomirova and B. E. Stern, Astron. Lett. 31, 291 (2005).

    Article  ADS  Google Scholar 

  3. M. J. Rees, Nature 333, 523 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  4. U. B. de Almeida and A. De Angelis, arXiv:1104.2528v1 [astro-ph.HE].

  5. J. S. Bloom at al., Science 333, 203 (2011).

    Article  ADS  Google Scholar 

  6. D. N. Burrows at al., Nature 476, 421 (2011).

    Article  ADS  Google Scholar 

  7. B. A. Zauderer at al., Nature 476, 425 (2011).

    Article  ADS  Google Scholar 

  8. J. S. Bloome et al., 2011, “GRB 110328A / Swift J164449.3+573451: X-ray analysis and a miniblazar analogy,” GCN Circular 11847.

  9. S. A. Colgate, Astrophys. J. 150, 163 (1967).

    Article  ADS  Google Scholar 

  10. R. H. Sanders, Astrophys. J. 162, 791 (1970).

    Article  ADS  Google Scholar 

  11. G. D. Quinlan and S. L. Shapiro, Astrophys. J. 356, 483 (1990).

    Article  ADS  Google Scholar 

  12. V. I. Dokuchaev, Usp. Fiz. Nauk 161, 1 (1991) [Sov. Phys. Usp. 34, 447 (1991)].

    Article  Google Scholar 

  13. L. Rezzolla at al., Astrophys. J. 732, L6 (2011).

    Article  ADS  Google Scholar 

  14. Z. Bin-Bin at al., Astrophys. J. 748, 132 (2012).

    Article  ADS  Google Scholar 

  15. M. V. Barkov and S. S. Komissarov, Mon. Not. Roy. Astron. Soc. 415, 944 (2011).

    Article  ADS  Google Scholar 

  16. M. V. Barkov and S. S. Komissarov, Mon. Not. Roy. Astron. Soc. 401, 1644 (2010).

    Article  ADS  Google Scholar 

  17. M. V. Barkov and A. S. Pozanenko, Mon. Not. Roy. Astron. Soc. 417, 2161 (2011).

    Article  ADS  Google Scholar 

  18. Yu. V. Baryshev and Yu. L. Ezova, Astron. Rep. 41, 436 (1997).

    ADS  Google Scholar 

  19. G. D. Quinlan and S. L. Shapiro, Astrophys. J. 321, 199 (1987).

    Article  ADS  Google Scholar 

  20. V. I. Dokuchaev, Yu. N. Eroshenko, and L. M. Ozernoy, BAAS 29, 848 (1997).

    ADS  Google Scholar 

  21. V. I. Dokuchaev, Yu. N. Eroshenko, and L. M. Ozernoy, Astrophys. J. 502, 192 (1998).

    Article  ADS  Google Scholar 

  22. V. I. Dokuchaev and Yu. N. Eroshenko, Astronomy Letters 37, 83 (2011).

    Article  ADS  Google Scholar 

  23. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, SvA Lett. 10, 177 (1984).

    ADS  Google Scholar 

  24. B. Paczynski, Astrophys. J 308, L43 (1986).

    Article  ADS  Google Scholar 

  25. L. Ferrarese at al., Astrophys. J. 644, L21 (2006).

    Article  ADS  Google Scholar 

  26. A. Mastrobuono-Battisti and R. Capuzzo-Dolcetta, arXiv: 1109.6620.

  27. G. D. Quinlan and S. L. Shapiro, Astrophys. J. 343, 725 (1989).

    Article  ADS  Google Scholar 

  28. Ya. B. Zel’dovich and M.A. Podurets, SvA 9, 742 (1965).

    Google Scholar 

  29. S. L. Shapiro and S. A. Teukolsky, Astrophys. J. 307, 575 (1986).

    Article  ADS  Google Scholar 

  30. J. H. Krolik and T. Piran, Astrophys. J. 743, 134 (2011).

    Article  ADS  Google Scholar 

  31. E. Babichev and V. Dokuchaev, Phys. Lett. A 265, 168 (2000).

    Article  ADS  Google Scholar 

  32. V. S. Berezinsky and V. I. Dokuchaev, Astropart. Phys. 15, 87 (2001).

    Article  ADS  Google Scholar 

  33. V. S. Berezinsky and V. I. Dokuchaev, Astron. Astrophys. 454, 401 (2006).

    Article  ADS  Google Scholar 

  34. V. Allevato et al., arXiv: 1105.0520.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Dokuchaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokuchaev, V.I., Eroshenko, Y.N. Swift J164449.3+573451 event: Generation in collapsing star cluster?. Gravit. Cosmol. 18, 232–238 (2012). https://doi.org/10.1134/S0202289312040044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289312040044

Keywords

Navigation