Skip to main content
Log in

Water temperature in different types of lakes in Karelia under changing climate based on data of instrumental measurements in 1953–2011

  • Interaction between Continental Waters and the Environment
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Data of many-year observations (1953–2011) have been used to study the effect of changes in regional climate on water surface temperature in different types of Karelian lakes. Positive trends are identified in water temperature in the lakes over ice-free period; the amplitudes and periods of oscillations have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardin, M.Yu., Variations of air temperature over western Russian territories and nearby countries in the XX century, Meteorol. Gidrol., 2002, No. 8, pp. 5–23.

    Google Scholar 

  2. Gidrologicheskie ezhegodniki (Hydrological Yearbooks), Leningrad: Gidrometeoizdat, 1936–1989, Vol. 9, No. 1, Bassein Belogo Morya (White Sea Basin), Vol. 1, nos. 0–3, Bassein Baltiiskogo Morya (Baltic Sea Basin).

  3. Gruza, G.V. and Ran’kova, E.Ya., Nablyudaemye i ozhidaemye izmeneniya klimata Rossii: temperatura vozdukha (Observed and Expected Climate Changes in Russia: Air Temperature), Obninsk: VNIIGMI-MTsD, 2012.

    Google Scholar 

  4. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2010 god (Report on Climate Features in Russian Federation Territory for 2010), Moscow: Rosgidromet, 2011. http://wwwmeteorfru

  5. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2011 god (Report on Climate Features in Russian Federation Territory for 2010), Moscow: Rosgidromet, 2012. http://wwwmeteorfru http://wwwmeteorfru

  6. Litvinov, A.S. and Zakonnova, A.V., Thermal regime in the Rybinsk Reservoir under global warming, Meteorol. Gidrol., 2012, No. 9, pp. 640–645.

    Google Scholar 

  7. Pal’shin, N.I., Efremova, T.V., and Potakhin, M.S., The effect of morphometric characteristics and geographic zonality on thermal stratification of lakes, Water Resour., 2008, Vol. 35, No. 2, 191–198.

    Google Scholar 

  8. Khain, V.E. and Khalilov, E.N., Tsiklichnost’ geodinamicheskikh protsessov i ee vozmozhnaya priroda (Periodicity of geodynamic processes and its possible nature), Moscow: Nauch. mir, 2009.

    Google Scholar 

  9. Shimaraev, M.N., Influence of the North Atlantic Oscillation on ice–thermal processes in Lake Baikal, Dokl. Akad. Nauk, 2008, Vol. 423A, No. 9, pp. 1418–1422.

    Google Scholar 

  10. Austin, J.A. and Colman, S.M., Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback, Geophys. Rev. Lett., 2007, No. 34, pp. 1–5.

    Google Scholar 

  11. Austin, J.A. and Colman, S.M., A century of temperature variability in Lake Superior, Limnol. Oceanogr., 2008, Vol. 53, No. 6, pp. 2724–2730.

    Article  Google Scholar 

  12. Burg, J.P., Maximum entropy spectral analysis, in Modern Spectral Analysis, New York: IEEE Press, 1968, pp. 34–48.

    Google Scholar 

  13. Dobiesz, N.E. and Lester, N.P., Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002, J. Great Lakes Research, 2009, No. 35, pp. 371–384.

    Article  Google Scholar 

  14. Efremova, T., Palshin, N., and Zdorovennov, R., Longterm characteristics of ice phenology in Karelian lakes, Estonian J. Earth Sci., 2013, Vol. 62, No. 1, pp. 33–41.

    Article  Google Scholar 

  15. Gillet, C. and Quetin, P., Effect of temperature changes on the reproductive cycle of roach in Lake Geneva from 1983 to 2001, J. Fish Biol., 2006, Vol. 69, pp. 518–534.

    Article  Google Scholar 

  16. Hampton, S.E., Izmest’eva, L.R., Moore, M.V., Katz, S.L., Dennis, B., and Silow, E.A., Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia, Glob. Change Biol., 2008, Vol. 14, pp. 1947–1958.

    Article  Google Scholar 

  17. Hirsch, R.M., Alexander, R.B., and Smith, R.A., Selection of methods for the detection and estimation of trends in water quality, Water Resour. Res., 1991, Vol. 27, No. 6, pp. 803–813.

    Article  Google Scholar 

  18. Livingstone, D.M., Impact of secular climate change on the thermal structure of a large temperate central European lake, Clim. Change, 2003, Vol. 57, pp. 205–225.

    Article  Google Scholar 

  19. Robertson, D.M., Ragotzkie R.A., Changes in thermal structure of moderate to large sizes lakes in response to change in air temperature, Aquatic Sci., 1990, Vol. 52, No. 3, pp. 360–380.

    Google Scholar 

  20. Rösner, R., Müller-Navarra, D.C., and Zorita, E., Trend analysis of weekly temperatures and oxygen concentrations during summer stratification in Lake Plusszee: a long-term study, Limnol. Oceanography, 2012, Vol. 57, pp. 1479–1491.

    Article  Google Scholar 

  21. Shimoda, Y., Azim, M.E., Perhar, G., Ramin, M., Kenney, M.A., Sadraddini, S., Gudimov, A., and Arhonditsis, G.B., Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes?, J. Great Lakes Res., 2011, Vol. 37, pp. 173–193.

    Article  Google Scholar 

  22. wwwclimatedataguideucaredu/climate-data/hurrellnorth-atlantic-oscillation-nao-index-pc-based

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Efremova.

Additional information

Original Russian Text © T.V. Efremova, N.I. Pal’shin, B.Z. Belashev, 2016, published in Vodnye Resursy, 2016, Vol. 43, No. 2, pp. 228–238.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, T.V., Pal’shin, N.I. & Belashev, B.Z. Water temperature in different types of lakes in Karelia under changing climate based on data of instrumental measurements in 1953–2011. Water Resour 43, 402–411 (2016). https://doi.org/10.1134/S0097807816020020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807816020020

Keywords

Navigation