Skip to main content
Log in

Abstract

In this semi-expository paper we disclose hidden symmetries of a classical nonholonomic kinematic model and try to explain the geometric meaning of the basic invariants of vector distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Agrachev, “Feedback-Invariant Optimal Control Theory and Differential Geometry. II: Jacobi Curves for Singular Extremals,” J. Dyn. Control Syst. 4(4), 583–604 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint (Fizmatlit, Moscow, 2004; Springer, Berlin, 2004).

    MATH  Google Scholar 

  3. A. A. Agrachev and I. Zelenko, “Geometry of Jacobi Curves. I, II,” J. Dyn. Control Syst. 8(1), 93–140 (2002); 8 (2), 167–215 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Agrachev and I. Zelenko, “Nurowski’s Conformal Structures for (2,5)-Distributions via Dynamics of Abnormal Extremals,” in Developments of Cartan Geometry and Related Mathematical Problems: Proc. RIMS Symp., Kyoto, 2005 (Kyoto Univ., Kyoto, 2006), pp. 204–218.

    Google Scholar 

  5. R. Bryant and L. Hsu, “Rigidity of Integral Curves of Rank 2 Distributions,” Invent. Math. 114(2), 435–461 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Cartan, “Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre,” Ann. Sci. Ec. Norm. Super., Sér. 3, 27, 109–192 (1910).

    MathSciNet  Google Scholar 

  7. R. B. Gardner, The Method of Equivalence and Its Applications (SIAM, Philadelphia, PA, 1989).

    MATH  Google Scholar 

  8. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications (Am. Math. Soc., Providence, RI, 2002).

    MATH  Google Scholar 

  9. P. Nurowski, “Differential Equations and Conformal Structures,” J. Geom. Phys. 55, 19–49 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  10. T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups (Springer, Berlin, 2000).

    MATH  Google Scholar 

  11. I. Zelenko, “On Variational Approach to Differential Invariants of Rank Two Distributions,” Diff. Geom. Appl. 24(3), 235–259 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Agrachev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Vol. 258, pp. 17–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrachev, A.A. Rolling balls and octonions. Proc. Steklov Inst. Math. 258, 13–22 (2007). https://doi.org/10.1134/S0081543807030030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543807030030

Keywords

Navigation