Skip to main content
Log in

Modeling the separation of oil sand

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mathematical modeling of ultrasonic or mechanical separation of oil sand in an aqueous alkaline medium was performed. Kinetic dependences were obtained that adequately describe bitumen recovery based on the limiting role of chemical transformations or mass transfer. It was shown that the second model describes the process kinetics better. A comparison of the theoretical and experimental data allowed us to obtain empirical equations that relate the kinetic coefficients of the model to the characteristics of the heterogeneous mixture being separated and the main process parameters. Recommendations on the technological conditions of separation were given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberta Energy regulator ST98-2015: Alberta’s Energy Reserves 2014 and Supply Demand Outlook 2015–2024, 2015.

  2. Abramov, O.V., Abramov, V.O., Myasnikov, S.K., and Mullakaev, M.S., Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound, Ultrason. Sonochem., 2009, vol. 16, no. 3, p. 408.

    Article  CAS  Google Scholar 

  3. Masliyah, J., Czarnecki, J., and Xu, Z., Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands, vol. 1: Theoretical Basis. Calgary: Kingsley, 2011.

    Google Scholar 

  4. Masliyah, J., Czarnecki, J., Xu, Z., and Dabros, M., Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands, vol. 2: Industrial Practice. Calgary: Kingsley, 2013.

    Google Scholar 

  5. Long, J., Xu, Z., and Masliyah, J., Bitumen recovery from oil sands, in Encyclopedia of Surface and Colloid Science, Somasundaran, P., Ed., London: Taylor and Francis, 2009.

    Google Scholar 

  6. Schramm, L.L. and Mikula, R.J., Froth flotation of oil sand bitumen, in Foam Engineering: Fundamentals and Applications, Stevenson, P., Ed., New York: Wiley, 2012, p. 251.

    Chapter  Google Scholar 

  7. Schramm, L.L., Emulsions, Foams, Suspensions, and Aerosols: Microscience and Applications, New York: Wiley, 2014, 2nd ed.

    Google Scholar 

  8. Harjai, S., Flury, C., Masliyah, J., Drelich, J., and Xu, Z., Robust aqueous-nonaqueous hybrid process for bitumen extraction from mineable Athabasca oil sands, Energy Fuels, 2012, vol. 26, no. 5, p. 2920.

    Article  CAS  Google Scholar 

  9. Srinivasa, S., Flury, C., Afacan, A., Masliyah, J., and Xu, Z., Study of bitumen liberation from oil sands ores by on-line visualization, Energy Fuels, 2012, vol. 26, no. 5, p. 2881.

    Article  Google Scholar 

  10. Ren, S., Masliyah, J., and Xu, Z., Studying bitumen–bubble interactions using atomic force microscopy, Colloids Surf., 2014, vol. 444, p. 165.

    Article  CAS  Google Scholar 

  11. Flury, C., Afacan, A., Bakhtiari, T.M., Sjoblom, J., and Xu, Z., Effect of caustic type on bitumen extraction from Canadian oil sands, Energy Fuels, 2014, vol. 28, p. 431.

    Article  CAS  Google Scholar 

  12. Schramm, L.L., Kramers, J.W., and Isaacs, E.E., Saskatchewan’s place in the Canadian oil sands, J. Can. Pet. Technol., 2010, vol. 49., no. 11, p. 12.

    Article  CAS  Google Scholar 

  13. Woods, J.R., Kung, J., Kingston, D., McCracken, T., Kotlyar, L.S., Sparks, B.D., Mercier, P.H.J., Ng, S., and Moranm, K., The comparison of bitumens from oil sands with different recovery profiles, Pet. Sci. Technol., 2012, vol. 30, no. 22, p. 2285.

    Article  CAS  Google Scholar 

  14. Woods, J., Sparks, B.D., Mercier, P.H.J., Kung, J., Moran, K., McCracken, T., Kingston, D., Ng, S., Patarachao, B., and Kotlyar, L.S., Colloidal clay gelation: Relevance to current oil sands operations, Pet. Sci. Technol., 2012, vol. 30, no. 9, p. 915.

    Article  Google Scholar 

  15. Chaohe, F., Dewen, Z., Zhixin, G., Xiaolong, L., and Zhilong, H., The research progress of oil sand separation technology in China, Adv. Pet. Explor. Dev., 2012, vol. 4, no. 2, p. 63.

    Google Scholar 

  16. Han, D.Y., Cao, Z.B., and Xu, X.Q., An oil sand separation agent applied on an extraction of Xinjiang oil sand, Energy Sources, Part A: Recov., Utiliz., Environ. Effects, 2012, vol. 34, no. 18, p. 1704.

    Article  CAS  Google Scholar 

  17. Zhibing, S., Juntao, Z., Jie, Z., and Shengrong, L., The caustic alkali-free water extraction agents for treating Inner Mongolia oil sands, China Pet. Process. Petrochem. Technol., 2014, vol. 16, no. 4, p. 65.

    Google Scholar 

  18. Bao, M. and Zhao, Y., Extraction technology of oil sands from Indonesia, J. Petrochem. Univ., 2012, vol. 25, p. 61.

    CAS  Google Scholar 

  19. Odebunmi, E.O. and Olaremu, A.G., Extraction of chemical constituents of bitumen using a mixed solvent system, Open J. Appl. Sci., 2015, vol. 5, p. 485.

    Article  Google Scholar 

  20. Bukharin, N., Vinogradov, O., and Hugo, R., Investigation of cavitating jet effect on bitumen separation from oil sands, Pet. Sci. Technol., 2012, vol. 30, no. 13, p. 1317.

    Article  CAS  Google Scholar 

  21. Bukharin, N. and Vinogradov, O., Investigation of the effect of slurry density on a bitumen separation process based on cavitating jets, Ind. Eng. Chem. Res., 2012, vol. 51, no. 17, p. 6175.

    Article  CAS  Google Scholar 

  22. Vinogradov, O., Hugo, R., Gu, P., and Bukharin, N., Canadian Patent 2717406, 2010.

    Google Scholar 

  23. Semagina, N. and Lange, C.F., How to design silent control experiments for ultrasound-assisted oil sands extraction and upgrading: A computational study, J. Pet. Sci. Eng., 2015, vol. 126, p. 83.

    Article  CAS  Google Scholar 

  24. Okawa, H., Hosokawa, R., Saito, T., Nakamura, T., and Kawamura, Y., The use of ultrasound irradiation for extracting bitumen from oil sand at low temperature, Proc. Symp. Ultrasonic Electron., 2010, vol. 31, p. 373.

    Google Scholar 

  25. Ning, X., Wenxiang, W., Pingfang, H., and Xiaoping, L., Effects of ultrasound on oily sludge deoiling, J. Hazard. Mater., 2009, vol. 171, p. 914.

    Article  Google Scholar 

  26. Pham, T.D., Shrestha, R.A., Virkutyte, J., and Sillanpaa, M., Recent studies in environmental applications of ultrasound, Can. J. Civil Eng., 2009, vol. 36, p. 1849.

    Article  Google Scholar 

  27. Abramov, O.V., Abramov, V.O., Myasnikov, S.K., and Mullakaev, M.S., High power ultrasonic technologies for extracting oil products from oil-bearing sands and contaminated soils, Theor. Found. Chem. Eng., 2009, vol. 43, no. 4, p. 504.

    Article  CAS  Google Scholar 

  28. Abramov, O.V., Abramov, V.O., Veksler, G.B., Kulov, N.N., Zabotina, E.V., Kashirskaya, O.A., Shkol’nikov, A.V., and Mullakaev, M.S., Ultrasonic activation of reagent purification of surface wastewaters from oil products, Theor. Found. Chem. Eng., 2009, vol. 43, no. 4, p. 568.

    Article  CAS  Google Scholar 

  29. Keremetin, P.P., Parilov, P.S., Mullakaev, M.S., Veksler, G.B., Kruchinina, N.E., and Abramov, V.O., Determination of the technological parameters for the sonochemical purification of oily water, Theor. Found. Chem. Eng., 2011, vol. 45, no. 4, p. 568.

    Article  CAS  Google Scholar 

  30. Fu, L., Zhang, G., Ge, J., and Liao, K., Dual-frequency ultrasound assisted oil-sands separation technology, J. Shenzhen Univ. Sci. Eng., 2014, vol. 31, no. 4, p. 436.

    Article  CAS  Google Scholar 

  31. Okawa, H., Saito, T., Hosokawa, R., and Nakamura, T., Effects of different ultrasound irradiation frequencies and water temperatures on extraction rate of bitumen from oil sand, Jpn. J. Appl. Phys., 2010, vol. 49, no. 7, p. 12.

    Article  Google Scholar 

  32. Mutyala, S., Fairbridge, C., Pare, J.R.J., Belange, J.M.R., Ng, S., and Hawkins, R., Microwave applications to oil sands and petroleum: A review, Fuel Process. Technol., 2010, vol. 91, p. 127.

    Article  CAS  Google Scholar 

  33. Leonelli, C. and Mason, T.J., Microwave and ultrasonic processing: Now a realistic option for industry, Chem. Eng. Process., 2010, vol. 49, p. 885.

    Article  CAS  Google Scholar 

  34. Rout, B., US Patent 0041369A1, 2015.

    Google Scholar 

  35. Zhang, J., Li, J., Thring, R.W., Hu, X., and Song, X., Oil recovery from refinery oily sludge via ultrasound and freeze/thaw, J. Hazard. Mater., 2012, vol. 203–204, p. 195.

    Article  Google Scholar 

  36. Pulati, N., Lupinsky, A., Miller, B., and Painter, P., Extraction of bitumen from oil sands using deep eutectic ionic liquid analogues, Energy Fuels, 2015, vol. 29, no. 8, p. 4927.

    Article  CAS  Google Scholar 

  37. Chong, J., Ng, S., Chung, K., Kotlyar, L.S., and Sparks, B.D., Impact of fines on warm extraction process using model oil sand, Oil Sand Process Water Workshop, Fort McMurray, Canada, 2001.

    Google Scholar 

  38. Chong, J., Ng, S., Chung, K.H., Kotlyar, L.S., and Sparks, B.D., Impact of fines content on a warm slurry extraction process using model oilsands, Fuel, 2003, vol. 82, p. 425.

    Article  CAS  Google Scholar 

  39. Myers, R.H. and Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York: Wiley, 1995.

    Google Scholar 

  40. NIST/SEMATECH e-Handbook of Statistical Methods, 2012. www.itl.nist.gov/div898/handbook.

  41. Wik, S., Sparks, B.D., Ng, S., Tu, Y., Li, Z., Chung, K.H., and Kotlyar, L.S., Effect of bitumen composition and process water chemistry on model oilsands separation using a warm slurry extraction process simulation, Fuel, 2008, vol. 87, p. 1413.

    Article  CAS  Google Scholar 

  42. Sadeghi, M.A., Sadeghi, K.M., Kuo, J.F., Jang, L.K., and Yen, T.F., US Patent 4891131, 1990.

    Google Scholar 

  43. Sadeghi, K.M., Sadeghi, M.A., and Yen, T.F., Novel extraction of tar sands by sonication with the aid of in situ surfactants, Energy Fuels, 1990, vol. 4, no. 5, p. 604.

    Article  CAS  Google Scholar 

  44. Esfandiari, R.S., Sloss, J.M., Sadeghi, M.A., and Yen, T.F., Determination of optimum rate constants for autocatalytic reaction of tar sand recovery process, Fuel Sci. Technol. Int., 1991, vol. 9, no. 5, p. 537.

    Article  CAS  Google Scholar 

  45. Chemistry with Ultrasound, Mason, T.J., Ed., Amsterdam: Elsevier, 1990.

  46. Romankov, P.G. and Frolov, V.F., Massoobmennye protsessy khimicheskoi tekhnologii: Sistemy s dispersnoi tverdoi fazoi (Mass Transfer Processes in Chemical Technologies: Systems with a Dispersed Solid Phase), Leningrad: Khimiya, 1990.

    Google Scholar 

  47. Aksel'rud, G.A. and Lysyanskii, V.M., Ekstragirovanie: Sistema tverdoe telo-zhidkost' (Extraction: The Solid–Liquid System), Leningrad: Khimiya, 1974.

    Google Scholar 

  48. Rudobashta, S.P., Massoperenos v sistemakh s tverdoi fazoi (Mass Transfer in Systems with a Solid Phase), Moscow: Khimiya, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Myasnikov.

Additional information

Original Russian Text © S.K. Myasnikov, N.N. Kulov, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myasnikov, S.K., Kulov, N.N. Modeling the separation of oil sand. Theor Found Chem Eng 51, 1–11 (2017). https://doi.org/10.1134/S0040579517010146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517010146

Keywords

Navigation