Skip to main content
Log in

Systematical analysis of chemical methods in metal nanoparticles synthesis

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

We propose a short review paper on the mainly adopted techniques for the production of metal nanoparticles in industrial and laboratory scale. The methods are grouped according to the wellknown classification in bottom-up and top-down schemes, with a particular emphasis on the operating conditions specifically adopted. Namely, some aspects concerning the experimental setup, the choice of precursors and reactants and the relevant technical advantages/limitations of the methods are discussed and compared in light of the most recent issues in matter of metal nanoparticles synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palazzi, E., Currò, F., Reverberi, A., and Fabiano, B., Development of a theoretical framework for the evaluation of risk connected to accidental oxygen releases, Process Saf. Environ. Prot., 2014, vol. 92, no. 4, pp. 357–367.

    Article  CAS  Google Scholar 

  2. Toccafondi, C., Thorat, S., la Rocca, R., Scarpellini, A., Salerno, M., Dante, S., and Das, G., Multifunctional substrates of thin porous alumina for cell biosensors, J. Mater. Sci.: Mater. Med., 2014, vol. 25, no. 10, pp. 2411–2420.

    CAS  Google Scholar 

  3. Iskandar, F., Nanoparticle processing for optical applications—a review, Adv. Powder Technol., 2009, vol. 20, no. 4, pp. 283–292.

    Article  CAS  Google Scholar 

  4. Alawi, O.A., Sidik, N.A.C., Mohammed, H.A., and Syahrullail, S., Fluid flow and heat transfer characteristics of nanofluids in heat pipes: A review, Int. Commun. Heat Mass Transfer, 2014, vol. 56, pp. 50–62.

    Article  CAS  Google Scholar 

  5. Vianello, C., Fabiano, B., Palazzi, E., and Maschio, G., Experimental study on thermal and toxic hazards connected to fire scenarios in road tunnels, J. Loss Prev. Process Ind., 2012, vol. 25, no. 4, pp. 718–729.

    Article  CAS  Google Scholar 

  6. Fabiano, B., Pistritto, F., Reverberi, A., and Palazzi, E., Ethylene–air mixtures under flowing conditions: A model-based approach to explosion conditions, Clean Technol. Environ. Policy, 2015, vol. 17, no. 5, pp. 1261–1270. DOI: 10.1007/s10098-015-0966-1

    Article  CAS  Google Scholar 

  7. Tosco, T., Petrangeli-Papini, M., Cruz Viggi, C., and Sethi, R., Nanoscale zerovalent iron particles for groundwater remediation: A review, J. Cleaner Prod., 2014, vol. 77, pp. 10–21.

    Article  CAS  Google Scholar 

  8. Tagliabue, M., Reverberi, A.P., and Bagatin, R., Boron removal from water: Needs, challenges and perspectives, J. Cleaner Prod., 2014, vol. 77, pp. 56–64.

    Article  CAS  Google Scholar 

  9. Butusov, O.B., Meshalkin, V.P., Popov, D.V., and Tyukaev, D.A., Computer-aided simulation of radioactive pollution of environment upon destruction of geologic repositories of radioactive wastes with allowance for uncertainty, Theor. Found. Chem. Eng., 2013, vol. 47, no. 6, pp. 702–708.

    Article  CAS  Google Scholar 

  10. Han, X.X., Schmidt, A.M., Marten, G., Fischer, A., Weidinger, I.M., and Hildebrandt, P., Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules, ACS Nano, 2013, vol. 7, no. 4, pp. 3212–3220.

    Article  CAS  Google Scholar 

  11. Long, N.V., Thi, C.M., Yong, Y., Nogami, M., and Ohtaki, M., Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells, J. Nanosci. Nanotechnol., 2013, vol. 13, no. 7, pp. 4799–4824.

    Article  CAS  Google Scholar 

  12. Etesami, M. and Mohamed, N., Electrooxidation of several organic compounds on simply prepared metallic nanoparticles: A comparative study, J. Chin. Chem. Soc., 2014, vol. 61, no. 3, pp. 377–382.

    Article  CAS  Google Scholar 

  13. Ngo, Q.B., Dao, T.H., Nguyen, H.C., Tran, X.T., Van Nguyen, T., Khuu, T.D., and Huynh, T.H., Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51), Adv. Nat. Sci.: Nanosci. Nanotechnol., 2014, vol. 5, no.1, art. no. 015016.

    Google Scholar 

  14. Tao, F., Nguyen, L., and Zhang, S., Metal Nanoparticles for Catalysis: Advances and Applications, RSC Catalysis Series, no. 17, Tao, F., Ed., London Royal Society of Chemistry, 2014.

    Google Scholar 

  15. Meshalkin, V.P., Stoyanova, O.V., and Dli, M.I., Project management in the nanotechnology industry: Specifics and possibilities of taking them into account, Theor. Found. Chem. Eng., 2012, vol. 46, no. 1, pp. 50–54.

    Article  CAS  Google Scholar 

  16. Sarkisov, P.D., Butusov, O.B., Meshalkin, V.P., Sevast’yanov, V.G., and Galaev, A.B., Computer-aided method of analysis of nanocomposite structure on the basis of calculations of isolines of fractal dimensionality, Theor. Found. Chem. Eng., 2010, vol. 44, no. 6, pp. 838–843.

    Article  CAS  Google Scholar 

  17. Sarkisov, P.D., Butusov, O.B., and Meshalkin, V.P., Computer-aided tools for molecular systems engineering and wavelet-morphometric analysis of the texture of nanomaterials, Theor. Found. Chem. Eng., 2011, vol. 45, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  18. Sarkisov, P.D., Butusov, O.B., Meshalkin, V.P., Sevast’yanov, V.G., and Pashaev, V.B., Computer molecular-dynamics simulation of the structure of crystal nanomaterials, Theor. Found. Chem. Eng., 2013, vol. 47, no. 2, pp. 83–88.

    Article  CAS  Google Scholar 

  19. De Rademaeker, E., Suter, G., Pasman, H.J., and Fabiano, B., A review of the past, present and future of the European loss prevention and safety promotion in the process industries, Process Saf. Environ. Prot., 2014, vol. 92, no. 4, p. 280–291.

    Article  CAS  Google Scholar 

  20. Fabiano, B., Currò, F., Reverberi, A.P., and Palazzi, E., Coal dust emissions: From environmental control to risk minimization by underground transport: An applicative case-study, Process Saf. Environ. Prot., 2014, vol. 92, no. 2, pp. 150–159.

    Article  CAS  Google Scholar 

  21. Palazzi, E., Currò, F., and Fabiano, B., Accidental continuous releases from coal processing in semi-confined environment, Energies, 2013, vol. 6, no. 10, pp. 5003–5022.

    Article  CAS  Google Scholar 

  22. Tovazhnyanskii, L.L., Ved’, V.E., Koshchii, V.A., Rovenskii, A.I., Meshalkin, V.P., and Krasnokutskii, E.V., Effectiveness of operation of sewerage system of mobile complex of thermocatalytic waste treatment, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, pp. 838–841.

    Article  CAS  Google Scholar 

  23. Solisio, C., Reverberi, A.P., del Borghi, A., and Dovi’, V.G., Inverse estimation of temperature profiles in landfills using heat recovery fluids measurements, J. Appl. Math., 2012, vol. 2012, art. no. 747410.

    Article  Google Scholar 

  24. Watt, J., Cheong, S., and Tilley, R.D., How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis, Nano Today, 2013, vol. 8, pp. 198–215.

    Article  CAS  Google Scholar 

  25. Puntes, V.F., Zanchet, D., Erdonmez, C.K., and Alivisatos, A.P., Synthesis of hcp-Co nanodisks, J. Am. Chem. Soc., 2002, vol. 124, no. 43, pp. 12874–12880.

    Article  CAS  Google Scholar 

  26. Vollmer, C. and Janiak, C., Naked metal nanoparticles from metal carbonyls in ionic liquids: Easy synthesis and stabilization, Coord. Chem. Rev., 2011, vol. 255, nos. 17–18, pp. 2039–2057.

    Article  CAS  Google Scholar 

  27. Schulz, S., Heimann, S., Wolper, C., and Assenmacher, W., Synthesis of bismuth pseudocubes by thermal decomposition of Bi2Et4, Chem. Mater., 2012, vol. 24, no. 11, pp. 2032–2039.

    Article  CAS  Google Scholar 

  28. Pascariu, V., Avadanei, O., Gasner, P., Stoica, I., Reverberi, A.P., and Mitoseriu, L., Preparation and characterization of PbTiO 3-epoxy resin compositionally graded thick films, Phase Transitions, 2013, vol. 86, no. 7, pp. 715–725.

    Article  CAS  Google Scholar 

  29. Nicole, L., Laberty-Robert, C., Rozes, L., and Sanchez, C., Hybrid materials science: A promised land for the integrative design of multifunctional materials, Nanoscale, 2014, vol. 6, no. 12, pp. 6267–6292.

    Article  CAS  Google Scholar 

  30. Pomogailo, A.D. and Dzhardimalieva, G.I., Controlled thermolysis of macromolecule–metal complexes as a way for synthesis of nanocomposites, Macromol. Symp., 2012, vol. 317–318, no. 1, pp. 198–205.

    Article  Google Scholar 

  31. Carotenuto, G., Palomba, M., and Nicolais, L., Nanocomposite preparation by thermal decomposition of [Ag(hfac)(COD)] in amorphous polystyrene, Adv. Polym. Technol., 2012, vol. 31, no. 3, pp. 242–245.

    Article  CAS  Google Scholar 

  32. Chiarioni, A., Reverberi, A.P., Fabiano, B., and Dovi, V.G., An improved model of an ASR pyrolysis reactor for energy recovery, Energy, 2006, vol. 31, no. 13, pp. 2460–2468.

    Article  Google Scholar 

  33. Tan, K.S. and Cheong, K.Y., Advances of Ag, Cu and Ag–Cu alloy nanoparticles synthesized via chemical route, J. Nanopart. Res., 2013, vol. 15, no. 4, Art. 1537.

    Article  Google Scholar 

  34. Clukay, C.J., Grabill, C.N., Hettinger, M.A., Dutta, A., Freppon, D.J., Robledo, A., Heinrich, H., Bhattacharya, A., and Kuebler, S.M., Controlling formation of gold nanoparticles generated in situ at a polymeric surface, Appl. Surf. Sci., 2014, vol. 292, pp. 128–136.

    Article  CAS  Google Scholar 

  35. Tolaymat, T.M., El Badawy, A.M., Genaidy, A., Scheckel, K.G., Luxton, T.P., and Suidan, M., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peerreviewed scientific papers, Sci. Total Environ., 2010, vol. 408, no. 5, pp. 999–1006. DOI: 10.1016/jscitotenv.2009.11.003

    Article  CAS  Google Scholar 

  36. Kim, S.C., Jung, S.C., Park, Y.-K., Ahn, H.G., and Seo, S.G., Influence of a surfactant and reducing agent on preparation of palladium, J. Nanosci. Nanotechnol., 2013, vol. 13, no. 3, pp. 1961–1965.

    Article  CAS  Google Scholar 

  37. Stochmal, E., Hasik, M., Turek, W., Bernasik, A., Adamczyk, A., Plis, A., and Litynska-Dobrzynska, L., Preparation and characterization of polypyrrole with dispersed metallic rhodium particles, Polym. Adv. Technol., 2011, vol. 22, no. 6, pp. 1067–1077.

    Article  CAS  Google Scholar 

  38. Hou, Y., Kondoh, H., Ohta, T., and Gao, S., Size-controlled synthesis of nickel nanoparticles, Appl. Surf. Sci., 2005, vol. 241, nos. 1–2, pp. 218–222.

    Article  CAS  Google Scholar 

  39. Kavas, H., Durmus, Z., Tanriverdi, E., Senel, M., Sozeri, H., and Baykal, A., Fabrication and characterization of dendrimer-encapsulated monometallic Co nanoparticles, J. Alloys Compd., 2011, vol. 509, no. 17, pp. 5341–5348.

    Article  CAS  Google Scholar 

  40. Lee, G., Choi, S.-I., Lee, Y.H., and Park, J.T., One-pot syntheses of metallic hollow nanoparticles of tin and lead, Bull. Korean Chem. Soc., 2009, vol. 30, no. 5, pp. 1135–1138.

    Article  CAS  Google Scholar 

  41. Wang, L., Cai, L., Shen, D., Feng, Y., Chen, M., and Qian, D., Reducing agents and capping agents in the preparation of metal nanoparticles, Prog. Chem., 2010, vol. 22, no. 4, pp. 580–592.

    CAS  Google Scholar 

  42. Jie, Y., Fan, H., Niskala, J.R., and You, W., Growth of nickel nanoparticles on an organic self-assembled monolayer template by means of electroless plating, Colloids Surf., A, 2013, vol. 434, pp. 194–199.

    Article  CAS  Google Scholar 

  43. Tang, X.-F., Yang, Z.-G., and Wang, W.-J., A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology, Colloids Surf., A, 2010, vol. 360, nos. 1–3, pp. 99–104.

    Article  CAS  Google Scholar 

  44. Salman, S.A., Usami, T., Kuroda, K., and Okido, M., Synthesis and characterization of cobalt nanoparticles using hydrazine and citric acid, J. Nanotechnol., 2014, vol. 2014, Art. no. 525193.

    Google Scholar 

  45. Ong, H.R., Khan, M.R., Ramli, R., and Yunus, R.M., Synthesis of copper nanoparticles at room temperature using hydrazine in glycerol, Appl. Mech. Mater., 2014, vol. 481, pp. 21–26.

    Article  CAS  Google Scholar 

  46. Lundahl, P., Stokes, R., Smith, E., Martin, R., and Graham, D., Synthesis and characterization of monodisperse silver nanoparticles with controlled size ranges, Micro Nano Lett., 2008, vol. 3, no. 2, pp. 62–65.

    Article  CAS  Google Scholar 

  47. Wang, L., Cai, L., Shen, D., Feng, Y., Chen, M., and Qian, D., Reducing agents and capping agents in the preparation of metal nanoparticles, Prog. Chem., 2010, vol. 22, no. 4, pp. 580–592.

    CAS  Google Scholar 

  48. Pastoriza-Santos, I. and Liz-Marzán, L., N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis, Adv. Funct. Mater., 2009, vol. 19, pp. 679–688.

    Article  CAS  Google Scholar 

  49. Mourdikoudis, S. and Liz-Marzán, L.M., Oleylamine in nanoparticle synthesis, Chem. Mater., 2013, vol. 25, no. 9, pp. 1465–1476.

    Article  CAS  Google Scholar 

  50. Wang, Y., Zheng, Y., Huang, C.Z., and Xia, Y., Synthesis of Ag nanocubes 18–32 nm in edge length: The effects of polyol on reduction kinetics, size control, and reproducibility, J. Am. Chem. Soc., 2013, vol. 135, no. 5, pp. 1941–1951.

    Article  CAS  Google Scholar 

  51. Alshammari, A., Köckritz, A., Kalevaru, V.N., Bagabas, A., and Martin, A., Influence of single use and combination of reductants on the size, morphology and growth steps of gold nanoparticles in colloidal mixture, Open J. Phys. Chem., 2012, vol. 2, no. 4, pp. 252–261.

    Article  Google Scholar 

  52. Zhang, A.-Q., Cai, L.-J., Sui, L., Qian, D.-J., and Chen, M., Reducing properties of polymers in the synthesis of noble metal nanoparticles, Polym. Rev., 2013, vol. 53, no. 2, pp. 240–276.

    Article  CAS  Google Scholar 

  53. Zola, A.S., Ribeiro, R.U., Bueno, J.M.C., Zanchet, D., and Arroyo, P.A., Cobalt nanoparticles prepared by three different methods, J. Exp. Nanosci., 2014, vol. 9, no. 4, p. 398–405.

    Article  CAS  Google Scholar 

  54. Capek, I., Preparation of metal nanoparticles in waterin-oil microemulsions, Adv. Colloid Interface Sci., 2004, vol. 110, pp. 49–74.

    Article  CAS  Google Scholar 

  55. Eastoe, J., Hollamby, M.J., and Hudson, L., Recent advances in nanoparticle synthesis with reverse micelles, Adv. Colloid Interface Sci., 2006, vols. 128–130, pp. 5–15.

    Google Scholar 

  56. Sanchez-Dominguez, M., Pemartin, K., and Boutonnet, M., Preparation of inorganic nanoparticles in oilin-water microemulsions: A soft and versatile approach, Curr. Opin. Colloid Interface Sci., 2012, vol. 17, pp. 297–305.

    Article  CAS  Google Scholar 

  57. Solanki, J.N. and Murthy, Z.V.P., Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review, Ind. Eng. Chem. Res., 2011, vol. 50, no. 22, pp. 12311–12323.

    Article  CAS  Google Scholar 

  58. Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Perez, B.O., and Perez, V.M.J., The greener synthesis of nanoparticles, Trends Biotechnol., 2013, vol. 31, no. 4, pp. 240–248.

    Article  CAS  Google Scholar 

  59. Fabiano, B., Reverberi, A.P., Del Borghi, A., and Dovi, V.G., Biodiesel production via transesterification: Process safety insights from kinetic modeling, Theor. Found. Chem. Eng., 2012, vol. 46, no. 6, pp. 673–680.

    Article  CAS  Google Scholar 

  60. Kobayashi, M., Yamashita, I., Uraoka, Y., Shiba, K., and Tomita, S., Gold nanostructures using tobacco mosaic viruses for optical metamaterials, Proc. SPIE Int. Soc. Opt. Eng., 2011, vol. 8070, art. no. 80700C.

    Google Scholar 

  61. Kannan, N. and Subbalaxmi, S., Biogenesis of nanoparticles—a current perspective, Rev. Adv. Mater. Sci., 2011, vol. 27, no. 2, pp. 99–114.

    CAS  Google Scholar 

  62. Narayanan, K.B. and Sakthivel, N., Biological synthesis of metal nanoparticles by microbes, Adv. Colloid Interface Sci., 2010, vol. 156, nos. 1–2, pp. 1–13.

    Article  CAS  Google Scholar 

  63. Palazzi, E., Perego, P., and Fabiano, B., Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor, Chem. Eng. Sci., 2002, vol. 57, no. 18, pp. 3819–3830.

    Article  CAS  Google Scholar 

  64. Zhang, M., Lv, J.-J., Li, F.-F., Bao, N., Wang, A.-J., Feng, J.-J., and Zhou, D.-L., Urea assisted electrochemical synthesis of flower-like platinum arrays with high electrocatalytic activity, Electrochim. Acta, 2014, vol. 123, pp. 227–232.

    Article  CAS  Google Scholar 

  65. Ambrusi, R.E., Staikov, G., and Garcia, S.G., Electrochemical synthesis of Cd–Ag bimetallic particles and the involved alloy formation, J. Electroanal. Chem., 2014, vol. 728, pp. 130–133.

    Article  CAS  Google Scholar 

  66. Ilias, S.H., Kok, K.Y., Ng, I.K., and Saidin, N.U., Electrochemical synthesis and characterization of palladium nanostructures, PJ. Phys.: Conf. Ser., 2013, vol. 431, no. 1, art. no. 012003.

    Google Scholar 

  67. Liu, X.-Y., Cui, C.-Y., Cheng, Y.-W., Ma, H.-Y., and Liu, D., Shape control technology during electrochemical synthesis of gold nanoparticles, Int. J. Miner., Metall. Mater., 2013, vol. 20, no. 5, pp. 486–492.

    Article  CAS  Google Scholar 

  68. Aguey-Zinsou, K.-F. and Ares-Fernandez, J.-R., Synthesis of colloidal magnesium: A near room temperature store for hydrogen, Chem. Mater., 2008, vol. 20, no. 2, pp. 376–378.

    Article  CAS  Google Scholar 

  69. Okitsu, K., Sonochemical synthesis of metal nanoparticles, in Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Ashokkumar Muthupandian, P., 2011, pp. 131–150.

    Google Scholar 

  70. Darroudi, M., Khorsand Zak, A., Muhamad, M.R., Huang, N.M., and Hakimi, M., Green synthesis of colloidal silver nanoparticles by sonochemical method, Mater. Lett., 2012, vol. 66, no. 1, pp. 117–120.

    Article  CAS  Google Scholar 

  71. Wei, M.-Y., Famouri, L., Carroll, L., Lee, Y., and Famouri, P., Rapid and efficient sonochemical formation of gold nanoparticles under ambient conditions using functional alkoxysilane, Ultrason. Sonochem., 2013, vol. 20, no. 1, pp. 610–617.

    Article  CAS  Google Scholar 

  72. Chadha, R., Maiti, N., and Kapoor, S., Reduction and aggregation of silver ions in aqueous citrate solutions, Mater. Sci. Eng., C, 2014, vol. 38, no. 1, pp. 192–196.

    Article  CAS  Google Scholar 

  73. Yamamoto, H., Kozawa, T., Tagawa, S., Naito, M., Marignier, J.-L., Mostafavi, M., and Belloni, J., Radiation-induced synthesis of metal nanoparticles in ethers THF and PGMEA, Radiat. Phys. Chem., 2013, vol. 91, pp. 148–155.

    Article  CAS  Google Scholar 

  74. Tung, H.-T., Chen, I.-G., Kempson, I.M., Song, J.-M., Liu, Y.-F., Chen, P.-W., Hwang, W.-S., and Hwu, Y., Shape-controlled synthesis of silver nanocrystals by X-ray irradiation for inkjet printing, ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 11, pp. 5930–5935.

    Article  CAS  Google Scholar 

  75. uba, V., N mec, M., Gbur, T., John, J., Pospišil, P., and Mú ka, M., Radiation formation of colloidal silver particles in aqueous systems, Appl. Radiat. Isot., 2010, vol. 68, nos. 4–5, pp. 676–678.

    Google Scholar 

  76. Abedini, A., Larki, F., Saion, E.B., Zakaria, A., and Hussein, M.Z., Radiation formation of Al–Ni bimetallic nanoparticles in aqueous system, J. Radioanal. Nucl. Chem., 2012, vol. 292, no. 1, pp. 361–366.

    Article  CAS  Google Scholar 

  77. Larosa, C., Salerno, M., Nanni, P., and Reverberi, A.P., Cobalt cementation in an ethanol–water system: Kinetics and morphology of metal aggregates, Ind. Eng. Chem. Res., 2012, vol. 51, no. 51, pp. 16564–16572.

    Article  CAS  Google Scholar 

  78. Ahmed, E.S., Fouad, O.A., El-Midany, A.A., El-Sabbagh, E.A., Abd, El., Rahman, A., and Ibrahim, I.A., Silver nanostructures via cementation on copper: A comparison between experimental data and statistical design model, Surf. Interface Anal., 2010, vol. 42, pp. 730–734.

    Article  CAS  Google Scholar 

  79. Inguanta, R., Piazza, S., and Sunseri, C., Novel procedure for the template synthesis of metal nanostructures, Electrochem. Commun., 2008, vol. 10, no. 4, pp. 506–509.

    Article  CAS  Google Scholar 

  80. Xia, D., Ku, Z., Lee, S.C., and Brueck, S.R.J., Nanostructures and functional materials fabricated by interferometric lithography, Adv. Mater., 2011, vol. 23, pp. 147–179.

    Article  CAS  Google Scholar 

  81. Wang, D., Ji, R., Albrecht, A., and Schaaf, P., Ordered arrays of nanoporous gold nanoparticles, Beilstein J. Nanotechnol., 2012, vol. 3, no. 1, pp. 651–657.

    Article  Google Scholar 

  82. Chen, Y., Zhou, H., Wang, Y., Li, W., Chen, J., Lin, Q., and Yu, C., Substrate hydrolysis triggered formation of fluorescent gold nanoclusters—a new platform for the sensing of enzyme activity, Chem. Commun., 2013, vol. 49, no. 84, pp. 9821–9823.

    Article  CAS  Google Scholar 

  83. Min, M., Kim, C., Yang, Y.I., Yi, J., and Lee, H., Topdown shaping of metal nanoparticles in solution: Partially etched AuPt nanoparticles with unique morphology, Chem. Commun., 2011, vol. 47, no. 28, pp. 8079–8081.

    Article  CAS  Google Scholar 

  84. Neveu, S., Massart, R., Rocher, V., and Cabuil, V., From bulk materials to nanoparticles using a one-step electrochemical method, J. Phys.: Condens. Matter, 2008, vol. 20, no. 20, p. 204104.

    CAS  Google Scholar 

  85. Sarkisov, P.D., Butusov, O.B., and Meshalkin, V.P., Wavelet decomposition-based morphometric algorithm for analyzing photomicrographs of texture of solidphase nanomaterials, Dokl. Chem., 2010, vol. 434, no. 2, pp. 269–273.

    Article  CAS  Google Scholar 

  86. Sarkisov, P.D., Baikov, Yu.A., and Meshalkin, V.P., Physical methods of analysis of the structure of crystalline materials on the basis of particle concentration fluctuations, diffraction phenomena, and the coherent scattering of electromagnetic radiation, Theor. Found. Chem. Eng., 2007, vol. 41, no. 3, pp. 229–234.

    Article  CAS  Google Scholar 

  87. Sarkisov, P.D., Baikov, Yu.A., and Meshalkin, V.P., Physicotheoretical method for analyzing the structure of crystalline materials using the diffraction scattering of high-frequency electromagnetic waves, Theor. Found. Chem. Eng., 2007, vol. 41, no. 6, pp. 793–799.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Reverberi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reverberi, A.P., Kuznetsov, N.T., Meshalkin, V.P. et al. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor Found Chem Eng 50, 59–66 (2016). https://doi.org/10.1134/S0040579516010127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516010127

Keywords

Navigation