Skip to main content
Log in

Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical r-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson–Lie groups. We obtain some new integrable models where a Poisson–Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. G. Drinfel’d, “Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang–Baxter equations,” Sov. Math. Dokl., 27, 68–71 (1983).

    MATH  Google Scholar 

  2. V. G. Drinfeld, “Quantum groups,” J. Soviet Math., 41, 898–915 (1988).

    Article  MathSciNet  Google Scholar 

  3. M. A. Semenov-Tian-Shasky, “What is a classical r-matrix?” Funct. Anal. Appl., 17, 259–272 (1983).

    Article  MATH  Google Scholar 

  4. Y. Kosmann-Schwarzbach, Integrability of Nonlinear Systems (Lect. Notes Phys., Vol. 495, Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, eds.), Springer, Berlin (1997).

  5. A. A. Belavin and V. G. Drinfeld, “Classical Young–Baxter equation for simple Lie algebras,” Funct. Anal. Appl., 17, 220–221 (1983).

    Article  MATH  Google Scholar 

  6. J. M. Figueroa-O’Farrill, “N=2 structures on solvable Lie algebras: The c=9 classification,” Commun. Math. Phys., 177, 129–156 (1996); arXiv:hep-th/9412008v2 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Zhang, “Classical Yang–Baxter equation and low dimensional triangular Lie bialgebras,” Phys. Lett. A, 246, 71–81 (1998); arXiv:math.QA/0311517v1 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. A. Jafarizadeh and A. Rezaei-Aghdam, “Poisson–Lie T-duality and Bianchi type algebras,” Phys. Lett. B, 458, 477–490 (1999); arXiv:hep-th/9903152v2 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. L. Hlavaty and L. Snobl, “Classification of 6-dimensional Manin triples,” arXiv:math.QA/0202209v2 (2002).

    MATH  Google Scholar 

  10. X. Gomez, “Classification of three-dimensional Lie bialgebras,” J. Math. Phys., 41, 4939–4956 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Rezaei-Aghdam, M. Hemmati, and A. R. Rastkar, “Classification of real three-dimensional Lie bialgebras and their Poisson–Lie groups,” J. Phys. A: Math.Gen., 38, 3981–3994 (2005); arXiv:math-ph/0412092v2 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. Eghbali, A. Rezaei-Aghdam, and F. Heidarpour, “Classification of two and three dimensional Lie superbialgebras,” J. Math. Phys., 51, 073503 (2010); arXiv:0901.4471v4 [math-ph] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. G. Ovando, “Four dimensional symplectic Lie algebras,” Beitr. Algebra Geom., 47, 419–434 (2006).

    MathSciNet  MATH  Google Scholar 

  14. A. Rezaei-Aghdam and M. Sephid, “Complex and bi-Hermitian structures on four-dimensional real Lie algebras,” J. Phys. A: Math. Theor., 43, 325210 (2010); arXiv:1002.4285v2 [math-ph] (2010); M. Sephid, “Complex and symplectic structures on four dimensional Lie-bialgebras [in Persian],” Master’s thesis, Department of Physics, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, “Invariants of real low dimension Lie algebras,” J. Math. Phys., 17, 986–994 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge (1995).

    MATH  Google Scholar 

  17. J. De Azcárraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology, and Some Applications in Physics, Cambridge Univ. Press, Cambridge (1995).

    Book  MATH  Google Scholar 

  18. J. Abedi-Fardad, A. Rezaei-Aghdam, and Gh. Haghighatdoost, “Classification of four dimensional real symplectic Lie bialgebras and their Poisson–Lie groups,” arXiv:1505.04612v1 [math-ph] (2015).

    MATH  Google Scholar 

  19. J. Abedi-Fardad, A. Rezaei-Aghdam, and Gh. Haghighatdoost, “Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems,” J. Math. Phys., 55, 053507 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Abedi-Fardad.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 1, pp. 3–20, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi-Fardad, J., Rezaei-Aghdam, A. & Haghighatdoost, G. Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups. Theor Math Phys 190, 1–17 (2017). https://doi.org/10.1134/S0040577917010019

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917010019

Keywords

Navigation