Skip to main content
Log in

Anosov C-systems and random number generators

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Anosov, Proc. Steklov Inst. Math., 90, 1–235 (1967).

    Google Scholar 

  2. G. A. Hedlund, Bull. Amer. Math. Soc., 45, 241–246 (1939).

    Article  MathSciNet  Google Scholar 

  3. E. Hopf, Math. Ann., 117, 590–608 (1940).

    Article  MathSciNet  Google Scholar 

  4. D. V. Anosov and Ya. G. Sinai, Russ. Math. Surveys, 22, 103–167 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. N. Kolmogorov, Dokl. Acad. Sci. USSR, 119, 861–865 (1958).

    MathSciNet  Google Scholar 

  6. A. N. Kolmogorov, Dokl. Acad. Sci. USSR, 124, 754–755 (1959).

    MathSciNet  Google Scholar 

  7. Ya. G. Sinai, Dokl. Acad. Sci. USSR, 124, 768–771 (1959).

    MathSciNet  Google Scholar 

  8. N. S. Krylov, Works on the Foundation of Statistical Physics [in Russian], Acad. Sci. USSR, Moscow (1950); English transl., Princeton Univ. Press, Princeton, N. J. (1979).

    Google Scholar 

  9. V. Arnold, Ann. Inst. Fourier (Grenoble), 16, 319–361 (1966).

    Article  Google Scholar 

  10. G. K. Savvidy, Phys. Lett. B, 130, 303–307 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Savvidy, Nucl. Phys. B, 246, 302–304 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. G. Gurzadyan and G. K. Savvidy, Astron. Astrophys., 160, 203–210 (1986).

    ADS  Google Scholar 

  13. G. W. Gibbons, Class. Q. Grav., 33, 025004 (2015); arXiv:1508.06755v2 [gr-qc] (2015).

    Article  ADS  Google Scholar 

  14. G. K. Savvidy and N. G. Ter-Arutyunyan-Savvidy, J. Comput. Phys., 97, 566–572 (1991); “On the Monte Carlo simulation of physical systems,” Preprint EFI-865-16-86-YEREVAN, EFI, Yerevan (1986).

    Article  ADS  MathSciNet  Google Scholar 

  15. K. G. Savvidy, Comput. Phys. Commun., 196, 161–165 (2015); arXiv:1404.5355v2 [astro-ph.HE] (2014).

    Article  ADS  Google Scholar 

  16. MIXMAX Network Meeting, https://indico.cern.ch/event/404547; The ROOT project, http://ph-dep-sft.web.cern.ch/project/root; The GEANT4 project, http://ph-dep-sft.web.cern.ch/project/geant4.

  17. European Union’s Horizon 2020, http://mixmax.hepforge.org; http://www.inp.demokritos.gr/~savvidy/mixmax.php.

  18. V. A. Rokhlin, Izv. Akad. Nauk SSSR Ser. Mat., 28, 867–874 (1964).

    MathSciNet  Google Scholar 

  19. I. P. Cornfeld, Y. G. Sinai, and S. V. Fomin, Ergodic Theory [in Russian], Nauka, Moscow (1980); English transl.: I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai (Grundlehren Math. Wiss., Vol. 245), Springer, New York (1982).

  20. V. P. Leonov, Sov. Math. Dokl., 1, 1252–1255 (1960).

    Google Scholar 

  21. I. M. Sobol’, Calculation of the Monte Carlo Method [in Russian], Nauka, Moscow (1973); English transl.: The Monte Carlo Method, Univ. of Chicago Press, Chicago (1974).

    MATH  Google Scholar 

  22. S. Smale, Bull. Amer. Math. Soc., 73, 747–817 (1967).

    Article  MathSciNet  Google Scholar 

  23. Ya. G. Sinai, Funct. Anal. Appl., 2, 61–82 (1968).

    Article  Google Scholar 

  24. G. A. Margulis, Funct. Anal. Appl., 4, 55–67 (1970).

    Article  MathSciNet  Google Scholar 

  25. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lect. Notes Math., Vol. 470), Springer, Berlin (1975).

    Book  MATH  Google Scholar 

  26. R. Bowen, Amer. J. Math., 94, 1–30 (1972).

    Article  MathSciNet  Google Scholar 

  27. R. Bowen, Trans. Amer. Math. Soc., 154, 377–397 (1971).

    MathSciNet  Google Scholar 

  28. V. A. Rokhlin, Izv. Akad. Nauk SSSR Ser. Mat., 13, 329–340 (1949).

    Google Scholar 

  29. V. A. Rokhlin, Theory Probab. Appl., 6, 322–323 (1961).

    Article  Google Scholar 

  30. Ya. G. Sinai, “Probabilistic ideas in ergodic theory,” in: Proc. Intl. Congress of Mathematicians (Stockholm, 15–22 August 1962), Inst. Mittag-Leffler, Djursholm, Sweden (1963), pp. 540–559.

    Google Scholar 

  31. A. L. Gines, Sov. Math. Dokl., 2, 750–752 (1961).

    Google Scholar 

  32. N. C. Metropolis and S. Ulam, J. Amer. Statist. Assoc., 44, 335–341 (1949).

    Article  MathSciNet  Google Scholar 

  33. N. C. Metropolis, G. Reitwiesner, and J. von Neumann, Math. Tables and Other Aids to Computation, 4, 109–111 (1950).

    Article  MathSciNet  Google Scholar 

  34. J. von Neumann, J. Res. Nat. Bur. Stand. Appl. Math. Ser., 12, 36–38 (1951).

    Google Scholar 

  35. F. James, “Finally, a theory of random number generation,” in: Scattering and Biomedical Engineering: Modeling and Applications (Fifth Intl. Workshop on Mathematical Methods in Scattering Theory and Biomedical Technology, Corfu, Greece, 18–19 October 2001, D. Fotiadis and C. Massalas, eds.), World Scientific, Singapore (2002), pp. 114–121.

    Chapter  Google Scholar 

  36. V. Demchik, Comput. Phys. Commun., 182, 692–705 (2011); arXiv:1003.1898v1 [hep-lat] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Falcioni, L. Palatella, S. Pigolotti, and A. Vulpiani, Phys. Rev. E, 72, 016220 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  38. P. L’Ecuyer and R. Simard, ACM Trans. Math. Software, 33, No. 4, 22 (2007).

    Article  MathSciNet  Google Scholar 

  39. N. Z. Akopov, G. K. Savvidy, and N. G. Ter-Arutyunyan-Savvidy, J. Comput. Phys., 97, 573–579 (1991); “Matrix generator of pseudorandom numbers,” Preprint EFI-867-18-86-YEREVAN, EFI, Yerevan (1986).

    Article  ADS  MathSciNet  Google Scholar 

  40. G. G. Athanasiu, E. G. Floratos, and G. K. Savvidy, Internat. J. Mod. Phys. C, 8, 555–565 (1997).

    Article  ADS  Google Scholar 

  41. N. Niki, Proc. Inst. Statist. Math., 32, 231–239 (1984).

    MathSciNet  Google Scholar 

  42. H. Niederreiter, Math. Japon., 31, 759–774 (1986).

    MathSciNet  Google Scholar 

  43. R. Lidl and H. Niederreiter, Finite Fields (Encycl. Math. Its Appl., Vol. 20), Addison-Wesley, Reading, Mass. (1983); “Finite fields, pseudorandom numbers, and quasirandom points,” in: Finite Fields, Coding Theory, and Advances in Communications and Computing (Lect. Notes Pure Appl. Math., Vol. 141, G. L. Mullen and P. J. S. Shiue, eds.), Dekker, New York (1993), pp. 375–394.

  44. V. Arnol’d and A. Avez, Ergodic Problems of Classical Mechanics, New York (1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Savvidy.

Additional information

This research was supported in part by the European Union’s Horizon 2020 research and innovation program under a Marie Skíodowska-Curie grant (Agreement No. 644121).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 188, No. 2, pp. 223–243, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvidy, G.K. Anosov C-systems and random number generators. Theor Math Phys 188, 1155–1171 (2016). https://doi.org/10.1134/S004057791608002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791608002X

Keywords

Navigation