Skip to main content
Log in

Determination of the height of the “meteoric explosion”

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

When cosmic bodies of asteroidal and cometary origin, with a size from 20 to approximately 100 m, enter dense atmospheric layers, they are destroyed with a large probability under the action of aerodynamic forces and decelerated with the transfer of their energy to the air at heights from 20–30 to several kilometers. The forming shock wave reaches the Earth’s surface and can cause considerable damage at great distances from the entry path similar to the action of a high-altitude explosion. We have performed a numerical simulation of the disruption (with allowance for evaporation of fragments) and deceleration of meteoroids having the aforesaid dimensions and entering the Earth’s atmosphere at different angles and determined the height of the equivalent explosion point generating the same shock wave as the fall of a cosmic body with the given parameters. It turns out that this height does not depend on the velocity of the body and is approximately equal to the height at which this velocity is reduced by half. The obtained results were successfully approximated by a simple analytical formula allowing one to easily determine the height of an equivalent explosion depending on the dimensions of the body, its density, and angle of entry into the atmosphere. A comparison of the obtained results with well-known approximate analytical (pancake) models is presented and an application of the obtained formula to specific events, in particular, to the fall of the Chelyabinsk meteorite on February 15, 2013, and Tunguska event of 1908, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilova, I.V., Biberman, L.M., Vorob’ev, V.S., et al, Opticheskie svoistva goryachego vozdukha (Optical Properties of Hot Air), Moscow: Nauka, 1970.

    Google Scholar 

  • Brown, P.G., and 32 co-authors, A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors, Nature, 2013, vol. 503, pp. 238–241.

    ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., and Zahnle, K.J, The 1908 Tunguska explosion–atmospheric disruption of a stony asteroid, Nature, 1993, vol. 361, pp. 40–44.

    Article  ADS  Google Scholar 

  • Collins, G.S., Melosh, H.J., and Markus, R.A, Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteorit. Planet. Sci., 2005, vol. 40, pp. 817–840.

    Article  ADS  Google Scholar 

  • Divari, N.B, Phenomena that accompany meteorite shower and its atmospheric trajectory, in Sikhote-Alinskii zheleznyi meteoritnyi dozhd’ (Sikhote-Alin Iron Meteorite Shower), Moscow: USSR Acad. Sci., 1959, vol. 1, pp. 26–48.

    Google Scholar 

  • Glasstone, S. and Dolan, P.J, The Effects of Nuclear Weapons, 3rd ed., Washington: United States Department of Defense and Department of Energy, 1977.

    Google Scholar 

  • Grigoryan, S.S, Meteorites motion and destruction in planetary atmospheres, Kosm. Issl., 1979, vol. 17, pp. 875–893.

    ADS  Google Scholar 

  • Grigoryan, S.S., Ibodov, F.S., Ibadov, S.I, Physical mechanism of Chelyabinsk superbolide explosion, Solar Syst. Res., 2013, vol. 47, no. 4, pp. 268–274.

    Article  ADS  Google Scholar 

  • Hills, J.G. and Goda, M.P, The fragmentation of small asteroids in the atmosphere, Astron. J., 1993, vol. 105, pp. 1114–1144.

    Article  ADS  Google Scholar 

  • Ivanov, B.A., Deniem, D., and Neukum, G, Implementation of dynamic strength models into 2D hydrocodes: applications for atmospheric break up and impact cratering, Int. J. Impact Eng., 1997, vol. 20, pp. 411–430.

    Article  Google Scholar 

  • Jeffers, S.V., Manley, S.P., Bailey, M.E., and Asher, D.J, Near-Earth object velocity distributions and consequences for the Chicxulub impactor, Mon. Notic. Roy. Astron. Soc., 2001, vol. 327, pp. 126–132.

    Article  ADS  Google Scholar 

  • Jenniskens, P., Fries, M., Yin, Q., et al, Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia, Science, 2012, vol. 338, pp. 1583–1587.

    Article  ADS  Google Scholar 

  • Korobeinikov, V.P., Chushkin, P.I., and Shurshalov, L.V, Combined simulation of the flight and explosion of a meteoroid in the atmosphere, Solar Syst. Res., 1991, vol. 25, no. 3, pp. 242–258.

    ADS  Google Scholar 

  • Kosarev, I.B., Loseva, N.V., and Nemchinov, I.V, Vapor optical properties and ablation of large chondrite and ice bodies in the Earth’s atmosphere, Solar Syst. Res., 1996, vol. 30, no. 4, pp. 265–278.

    ADS  Google Scholar 

  • Kosarev, I.B, The way to calculate thermodynamic and optical properties of matter vapors of space bodies entering the Earth’s atmosphere, Inzh.-Fiz. Zh., 1999, vol. 72, no. 6, pp. 1067–1075.

    Google Scholar 

  • Kuznetsov, N.M., Termodinamicheskie funktsii i udarnye adiabaty vozdukha pri vysokikh temperaturakh (Thermodynamical Functions and Impact Adiabates for Air under High Temperatures), Moscow: Mashinostroenie, 1965.

    Google Scholar 

  • Levin, B.Yu. and Bronshten, V.A, Tunguska event and meteors with final flash, Astron. Vestn., 1985, vol. 19, no. 4, pp. 319–330.

    ADS  Google Scholar 

  • McCord, T.B., Morris, J., Persing, D., et al, Detection of a meteoroid entry into the Earth’s atmosphere on February 1, 1994, J. Geophys. Res., 1995, vol. 100, no. E2, pp. 3245–3249.

    Article  ADS  Google Scholar 

  • Nemtchinov, I.V. and Popova, O.P, An analysis of the 1947 Sikhote-Alin event and a comparison with the phenomenon of February 1, 1994, Solar Syst. Res., 1997, vol. 31, no. 5, pp. 408–421.

    ADS  Google Scholar 

  • Pierazzo, E., Vickery, A.M., and Melosh, H.J., A reevaluation of impact melt production, Icarus, 1997, vol. 127, pp. 408–423.

    Article  ADS  Google Scholar 

  • Popova, O.P. and Nemchinov, I.V, Meteoritic phenomena (bolides) in the Earth’s atmosphere, in Katastroficheskie vozdeistviya kosmicheskikh tel (Catastrophic Impact of Space Bodies), Adushkin, V.V. and Nemchinov, I.V., Eds., Moscow: Akademkniga, 2005, pp. 92–117.

    Google Scholar 

  • Popova, O, Borovika, J., Hartmann, W.K., Spurny, P., Gnos, E., Nemtchinov, I., and Trigo-Rodriguez, J.M., Very low strengths of interplanetary meteoroids and small asteroids, Meteorit. Planet. Sci., 2011, vol. 46, pp. 1525–1550.

    Article  ADS  Google Scholar 

  • Popova, O.P., and 59 co-authors, Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, pp. 1069–1073.

    Article  ADS  Google Scholar 

  • Shuvalov, V.V, Multi-dimensional hydrodynamic code SOVA for interfacial flows: application to thermal layer effect, Shock Waves, 1999, vol. 9, no. 6, pp. 381–390.

    Article  ADS  MATH  Google Scholar 

  • Shuvalov, V.V. and Artemieva, N.A, Numerical modeling of Tunguska-like impacts, Planet. Space Sci., 2002, vol. 50, pp. 181–192.

    Article  ADS  Google Scholar 

  • Shuvalov, V.V. and Trubetskaya, I.A, Numerical modeling of impact induced aerial bursts, Solar Syst. Res., 2007, vol. 41, no. 3, pp. 220–230.

    Article  ADS  Google Scholar 

  • Shuvalov, V.V. and Trubetskaya, I.A, The influence of internal friction on the deformation of a damaged meteoroid, Sol. Syst. Res, 2010, vol. 44, no. 2, pp. 104–109.

    Article  ADS  Google Scholar 

  • Shuvalov, V.V., Svettsov, V.V., and Trubetskaya, I.A, An estimate for the size of the area of damage on the Earth’s surface after impacts of 10-300-m asteroids, Solar Syst. Res., 2013, vol. 47, no. 4, pp. 260–267.

    Article  ADS  Google Scholar 

  • Silber, E.A, Le Pichon, A., and Brown, P., Infrasonic detection of a near-Earth object 746 impact over Indonesia on 8 October, 2009, Geophys. Rev. Lett., 2011, vol. 38, p. L12201. doi: 10.1029/2011GL047633

    Article  ADS  Google Scholar 

  • Svetsov, V.V., Nemtchinov, I.V., and Teterev, A.V, Disintegration of large meteoroids in Earth’s atmosphere: theoretical models, Icarus, 1995, vol. 116, pp. 131–153. Errata: Icarus, vol. 120, no. 2, p. 443.

    Article  ADS  Google Scholar 

  • Svettsov, V.V, Enigmas of the Sikhote Alin crater field, Solar Syst. Res., 1998, vol. 32, no. 4, pp. 67–79.

    ADS  Google Scholar 

  • Svettsov, V.V, The way to estimate the energy of the surface waves under explosions in the atmosphere and parameters of Tunguska event, Fiz. Zemli, 2007, vol. 43, no. 7, pp. 57–66.

    Google Scholar 

  • Tauzin, B., Debayle, E., Quantin, C., and Coltice, N, Seismoacoustic coupling induced by the breakup of the 15 February 2013 Chelyabinsk meteor, Geophys. Rev. Lett., 2013, vol. 40, no. 14, pp. 3522–3526.

    Article  ADS  Google Scholar 

  • Thompson, S.L. and Lauson, H.S, Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state, Report SC-RR-71 0714, Albuquerque, NM: Sandia National Lab., 1972.

    Google Scholar 

  • Tillotson, J.H, Metallic equations of state for hypervelocity impact, General Atomic Report GA-3216, 1962.

    Google Scholar 

  • Vasil’ev, N.V., Kovalevskii, A.F., Razin, S.A., and Epiktetova, L.E, Pokazaniya ochevidtsev Tungusskogo padeniya (Original Evidences of Tunguska Event), Moscow: VINITI, 1981, no. 5350–81.

    Google Scholar 

  • Vasil’ev, N.V, Tungusskii meteorit. Kosmicheskii fenomen leta 1908 g (Tunguska Meteorite. Space Phenomena of Summer, 1908), Moscow: NP ID“Russkaya panorama”, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shuvalov.

Additional information

Original Russian Text © V.V. Shuvalov, O.P. Popova, V.V. Svettsov, I.A. Trubetskaya, D.O. Glazachev, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, V.V., Popova, O.P., Svettsov, V.V. et al. Determination of the height of the “meteoric explosion”. Sol Syst Res 50, 1–12 (2016). https://doi.org/10.1134/S0038094616010056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094616010056

Keywords

Navigation