Skip to main content
Log in

Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We formulate a new definition of Sobolev function spaces on a domain of a metric space in which the doubling condition need not hold. The definition is equivalent to the classical definition in the case that the domain lies in a Euclidean space with the standard Lebesgue measure. The boundedness and compactness are examined of the embeddings of these Sobolev classes into L q and C α . We state and prove a compactness criterion for the family of functions L p (U), where U is a subset of a metric space possibly not satisfying the doubling condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bojarski B. and Hajłasz P., “Pointwise inequalities for Sobolev functions and some applications,” Studia Math., 106, No. 1, 77–92 (1993).

    MathSciNet  MATH  Google Scholar 

  2. Haj-lasz P., “Sobolev spaces on an arbitrary metric spaces,” Potential Anal., 5, No. 4, 403–415 (1996).

    MathSciNet  Google Scholar 

  3. Franchi B., Haj-lasz P., and Koskela P., “Definitions of Sobolev classes on metric spaces,” Ann. Inst. Fourier, 49, No. 6, 1903–1924 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. Haj-lasz P. and Koskela P., “Sobolev met Poincaré,” Mem. Amer. Math. Soc., 145, No. 688, 1–101 (2000).

    MathSciNet  Google Scholar 

  5. Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin (2001).

    Book  MATH  Google Scholar 

  6. Goldshtein V. M. and Troyanov M., “Axiomatic theory of Sobolev spaces,” Exposition. Math., 19, No. 4, 289–336 (2001).

    Article  MathSciNet  Google Scholar 

  7. Bojarski B., “Pointwise characterization of Sobolev classes,” Trudy Mat. Inst. Steklov., 255, 71–87 (2006).

    MathSciNet  Google Scholar 

  8. Ivanishko I. A. and Krotov V. G., “Compactness of embeddings of Sobolev type on metric measure spaces,” Math. Notes, 86, No. 6, 775–788 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. Triebel H., “Limits of Besov norms,” Arch. Math., 96, No. 2, 169–175 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang D., “New characterizations of Haj-lasz-Sobolev spaces on metric spaces,” Sci. China, 46, No. 5, 675–689 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. Jerison D., “The Poincaré inequality for vector fields satisfying Hörmander’s condition,” Duke Math. J., 53, No. 2, 503–523 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. Coifman R. R. and Weiss G., Analyse harmonique non-commutative sur certains espaces homogénes, Springer-Verlag, Berlin (1971) (Lecture Notes in Math.; 242).

    MATH  Google Scholar 

  13. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacian, Springer-Verlag, Berlin and Heidelberg (2007).

    Google Scholar 

  14. Folland G. B., “Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., 13, No. 2, 161–207 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörmander L., “Hypoelliptic second order differential equations,” Acta Math., 119, 147–161 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnsson A., “Brownian motion on fractals and function spaces,” Math. Z., Bd 222,Heft 3, 495–504 (1996).

    Article  MathSciNet  Google Scholar 

  17. Barlow M. T., Diffusions on Fractals. Lectures on Probability Theory and Statistics, Springer-Verlag, Berlin (1998) (Lecture Notes Math.; V. 1690).

    Google Scholar 

  18. Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence, RI (1991).

    MATH  Google Scholar 

  19. Brudnyĭ Yu. A., “Criteria for the existence of derivatives in L p,” Math. USSR-Sb., 2, No. 1, 35–55 (1967).

    Article  Google Scholar 

  20. Hardy G. H. and Littlewood J. E., “Some properties of fractional integrals. I,” Math. Z., Bd 27, 565–606 (1928).

    Google Scholar 

  21. Dezin A. A., “On embedding theorems and the problem of continuation of functions,” Dokl. Akad. Nauk SSSR, 88, No. 5, 741–743 (1953).

    MathSciNet  MATH  Google Scholar 

  22. Nikol’skiĭ S. M., Approximation of Functions in Several Variables and Embedding Theorems [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  23. Besov O. V., Il’in V. P., and Nikol’skiĭ S. M., Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1996).

    Google Scholar 

  24. Riesz M., “Sur les ensembles compacts de fonctions sommables,” Acta Sci. Math., 6, No. 1, 136–142 (1933).

    Google Scholar 

  25. Kolmogoroff A. N., “Über Kompaktheit der Functionen bei der Konvergenz im Mittel,” Nachr. Ges. Wiss. Götingen, Bd 9, 60–63 (1931).

    Google Scholar 

  26. Hanche-Olsen H. and Holden H., “The Kolmogorov-Riesz compactness theorem,” Exposition Math., 28, No. 4, 385–394 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. Kalamajska A., “On compactness of embeddings for Sobolev spaces defined on metric spaces,” Ann. Acad. Sci. Fenn. Math., 24, No. 1, 123–132 (1999).

    MathSciNet  Google Scholar 

  28. Krotov V. G., “Criteria for compactness in L p -spaces, p > 0,” Sb.: Math., 203, No. 7, 1045–1064 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. Vodop’yanov S. K. and Romanovskiĭ N. N., “Sobolev classes of mappings on a Carnot-Carathéodory space: Various norms and variational problems,” Siberian Math. J., 49, No. 5, 814–828 (2008).

    Article  Google Scholar 

  30. Saksman E., “Remarks on the nonexistence of doubling measures,” Ann. Acad. Sci. Fenn. Math., 24, No. 1, 155–163 (1999).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Romanovskiĭ.

Additional information

Original Russian Text Copyright © 2013 Romanovskiĭ N.N.

The author was supported by the Interdisciplinary Project of the Siberian and Far East Divisions of the Russian Academy of Sciences (Grant No. 56).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 54, No. 2, pp. 450–467, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanovskiĭ, N.N. Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings. Sib Math J 54, 353–367 (2013). https://doi.org/10.1134/S0037446613020171

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446613020171

Keywords

Navigation