Skip to main content
Log in

Commutator identities of the homotopes of (−1, 1)-algebras

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the commutator algebras of the homotopes of (−1, 1)-algebras and prove that they are Malcev algebras satisfying the Filippov identity h a (x, y, z) = 0 in the case of strictly (−1, 1)-algebras. We also proved that every Malcev algebra with the identities xy 3 = 0, xy 2 z 2 = 0, and h a (x, y, z) = 0 is nilpotent of index at most 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pchelintsev S. V., “Isotopes of prime (−1, 1)-and Jordan algebras,” Algebra and Logic, 49, No. 3, 262–288 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. Filippov V. T., “Semiprime Malcev algebras of characteristic 3,” Algebra and Logic, 14, No. 1, 64–71 (1975).

    Article  MATH  Google Scholar 

  3. Filippov V. T., “Prime Mal-tsev algebras,” Math. Notes, 31, No. 5, 341–345 (1982).

    Article  MATH  Google Scholar 

  4. Zhevlakov K. A., Slin’ko A. M., Shestakov I. P., and Shirshov A. I., Rings That Are Nearly Associative, Academic Press, New York (1982).

    MATH  Google Scholar 

  5. Roomeldi R. E., “Centers of a free (−1, 1)-ring,” Siberian Math. J., 18, No. 4, 610–622 (1978).

    Article  MathSciNet  Google Scholar 

  6. Pchelintsev S. V., “Prime algebras and absolute zero divisors,” Math. USSR Izv., 28, No. 1, 79–98 (1987).

    Article  MATH  Google Scholar 

  7. Kleinfeld E., “Right alternative rings,” Proc. Amer. Math. Soc., 4, No. 6, 939–944 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  8. Hentzel I. R., “The characterization of (−1, 1) rings,” J. Algebra, 30, 236–258 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  9. Pchelintsev S. V., “Identities of a free (−1, 1)-algebra of rank 3,” in: Studies on the Theory of Rings and Algebras [in Russian], Nauka, Novosibirsk, 1989, pp. 110–131.

    Google Scholar 

  10. Roomeldi R. E., (−1, 1)-Rings [in Russian], Avtoref. Kand. Fiz.-Mat. Nauk, Novosibirsk (1975).

    Google Scholar 

  11. Pchelintsev S. V., “On the variety of algebras of type (−1, 1),” Algebra and Logic, 25, No. 2, 97–108 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. Pchelintsev S. V., “Variety generated by a free algebra of type (−1,1) and of rank 2,” Siberian Math. J., 22, No. 3, 454–466 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  13. Buchnev A. A., Filippov V. T., and Shestakov I. P., “Checking identities of nonassociative algebras by computer,” in: Abstracts: The Third Siberian Congress on Applied and Industrial Mathematics (INPRIM-98), Sobolev Inst. Math., Novosibirsk, 1998, p. 9.

    Google Scholar 

  14. Sagle A. A., “Malcev algebras,” Trans. Amer. Math. Soc., 101, No. 3, 426–458 (1961).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Pchelintsev.

Additional information

Original Russian Text Copyright © 2013 Pchelintsev S.V.

The author was supported by the Russian Foundation for Basic Research (Grant 11-01-00938-a) and the Program “Development of the Scientific Potential of Higher School” (Grant 2.1.1.419).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 54, No. 2, pp. 417–435, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pchelintsev, S.V. Commutator identities of the homotopes of (−1, 1)-algebras. Sib Math J 54, 325–340 (2013). https://doi.org/10.1134/S0037446613020158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446613020158

Keywords

Navigation