Skip to main content
Log in

Deoxidation with silicon and the control of oxide inclusions in electrical steels

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The oxygen solubility in Fe-Si melts in equilibrium with SiO2 at 1873 K has been determined in a concentration range of 0.1–70 wt % Si. Model alloys are melted in quartz crucibles in an argon atmosphere. The oxygen content in analytical samples is determined by the inert-gas reducing-fusion method after careful sample preparation. The results obtained have been processed using a thermodynamic model that can calculate the oxygen activity and solubility in Fe-Si melts up to 100 wt % Si. The effects of the heating rate and the silicon content on the carbon concentration in carbonyl iron and Fe-Si alloys are studied using the inert-gas reducing-fusion method in the temperature range 1673–2373 K. Oriented electrical steels are investigated using fractional gas analysis. The main forms of oxygen in these steels are found to be silicates, Al2O3, and MgAl2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Rosa, D. Ruiza, Y. Houbaerta, and R. E. Vandenberghe, “Study of Ordering Phenomena in High Silicon Electrical Steel (up to 12.5 at %) by Mössbauer Spectroscopy,” J. Magn. Magn. Mater. 242–245, 208–211 (2002).

    Article  Google Scholar 

  2. C. Hsin-Min and J. Chipman, “The Chromium-Oxygen Equilibrium in Liquid Iron,” Trans. ASM 38, 70–116 (1947).

    Google Scholar 

  3. Steelmaking Data Sourcebook (Gordon & Breach, New York, 1988).

  4. N. A. Goken and J. Chipman, “Silicon-Oxygen Equilibrium in Liquid Iron,” Trans. TMS-AIME 194, 171–181 (1952).

    Google Scholar 

  5. S. Tszen-Tszi, A. Yu. Polyakov, and A. M. Samarin, “Oxygen Solubility in Liquid Iron-Silicon Alloys at Atmospheric Pressure under Vacuum,” Izv. Akad. Nauk SSSR, OTN Metallurgiya i Toplivo, No. 2, 115–118 (1961).

  6. T. Narushima, K. Matsuzawa, Y. Mukai, and Y. Iguchi, “Oxygen Solubility in Liquid Silicon,” Mater. Trans. 35(8), 522–528 (1994).

    CAS  Google Scholar 

  7. K. Yanaba, Y. Matsumura, T. Narushima, and Y. Iguchi, “Effect of Alloying Elements on the Carbon Solubility in Liquid Silicon Equilibrated with Silicon Carbide,” Mater. Trans. 39(8), 819 (1998).

    CAS  Google Scholar 

  8. K. V. Grigorovitch, “Fractional Gas Analysis—a New Trend in Quality Control,” Anal. Kontr. 4(3), 244–251 (2000).

    Google Scholar 

  9. K. V. Grigorovitch, P. V. Krasovskii, S. A. Isakov, et al., “Processing and Interpretation of Fractional Gas Analysis Results,” Zavod. Lab. 68(9), 3–9 (2002).

    Google Scholar 

  10. P. V. Krasovskii and K. V. Grigorovitch, “Thermodynamics of Nonisothermal Reduction of Oxide Inclusions in Carbon-Saturated Melts,” Izv. Ross. Akad. Nauk, Ser. Met., No. 2, 10–16 (2002) [Russian Metallurgy (Metally), No. 2, 114–117 (2002)].

  11. N. M. Chuiko, E. I. Moshkevich, A. T. Perevyazko, and Yu. P. Galitskii, Transformer Steel (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  12. Y. Kurosaki, M. Shiozaki, K. Higashine, and M. Sumimoto, “Effect of Oxide Shape on Magnetic Properties of Semiprocessed Nonoriented Electrical Steel Sheets,” ISIJ Int. 39(6), 607–613 (1999).

    CAS  Google Scholar 

  13. V. A. Sinel’nikov and B. S. Ivanov, Casting of Low-Carbon Electrical Steel (Metallurgiya, Moscow, 1991) [in Russian].

    Google Scholar 

  14. F. Ishii and S. Ban-ya, “Deoxidation Equilibrium of Silicon in Liquid Nickel and Nickel-Iron Alloys,” ISIJ Int. 32(10), 1091–1096 (1992).

    CAS  Google Scholar 

  15. R. W. Shaw, R. Bredeweg, and P. Rosseto, “Gas Fusion Analysis of Oxygen in Silicon: Separation of Components,” J. Electrochem. Soc. 138(2), 582–584 (1991).

    Article  CAS  Google Scholar 

  16. T. Ise, Y. Nuri, Y. Kato, et al., “The Effect of Heating Conditions on the Removal of Oxide Film on Steel Surface by the Inert Gas Fusion Method,” ISIJ Int. 38(12), 1362–1368 (1998).

    CAS  Google Scholar 

  17. V. K. Grigorovitch, Electronic Structure and Thermodynamics of Iron Alloys (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  18. P. V. Krasovskii, K. V. Grigorovitch, and W. Gruner, “Comparative Study of Oxide Speciation in Steel by Inert Gas Fusion Technique,” Steel Res. Int. 77(1), 50–58 (2006).

    Google Scholar 

  19. H. Hirata and K. Hoshikawa, “Oxygen Solubility and Its Temperature Dependence in a Silicon Melt in Equilibrium with Solid Silica,” J. Cryst. Growth 106, 657–664 (1990).

    Article  CAS  Google Scholar 

  20. S. S. Shibaev, P. V. Krasovskii, and K. V. Grigorovitch, “Solubility of Oxygen in Iron-Silicon Melts in Equilibrium with Silica at 1873 K,” ISIJ Int. 45(9), 1243–1247 (2005).

    Article  CAS  Google Scholar 

  21. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green and Co., London, 1954; Nauka, Novosibirsk, 1966).

    Google Scholar 

  22. G. V. Belov, V. S. Iorish, and V. S. Yungman, “IVTANTHERMO for Windows—Database on Thermodynamic Properties and Related Software,” CALPHAD 23(2), 173–180 (1999).

    Article  CAS  Google Scholar 

  23. A. I. Zaitsev, M. A. Zemchenko, and B. M. Mogutnov, “Thermodynamic Properties of {(1 − x)Si + xFe}(I),” J. Chem. Thermodyn. 23, 831–849 (1991).

    Article  CAS  Google Scholar 

  24. D. Janke and W. Fisher, “Thermochemical Data for the Reactions 2Cr + 3/2O2 = Cr2O3, Mo + O2 = MoO2 and SO2 = [O] in Liquid Iron,” Arch. Eisenhuttenwes 46(12), 755–760 (1975).

    CAS  Google Scholar 

  25. Y. Kita, J. B. Van Zytveld, Z. Morita, and T. Iida, “Covalency in Liquid Si and Liquid Transition-Metal-Si Alloys: X-ray Diffraction Studies,” J. Phys.: Condens. Matter 6(4), 811–820 (1994).

    Article  CAS  Google Scholar 

  26. M. G. Frohberg and M. Wang, “Thermodynamic Properties of Sulphur in Liquid Copper-Antimony Alloys at 1473 K,” Z. Metallkd. 81(7), 513–515 (1990).

    CAS  Google Scholar 

  27. P. V. Krasovskii and K. V. Grigorovitch, “Thermodynamics of Iron-Carbon Melts with Silicon or Aluminum,” Izv. Ross. Akad. Nauk, Ser. Met., No. 4, 7–16 (2001) [Russian Metallurgy (Metally), No. 4, 337–345 (2001)].

  28. F. Neumann, H. Schenck, and W. Patterson, “Eisen-Kohlenstoff-Legierungen in Thermodynamischer Betrachtung,” Giess.-Wissen, No. 23, 1217–1246 (1959).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.S. Shibaev, K.V. Grigorovitch, 2006, published in Metally, 2006, No. 2, pp. 14–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibaev, S.S., Grigorovitch, K.V. Deoxidation with silicon and the control of oxide inclusions in electrical steels. Russ. Metall. 2006, 108–118 (2006). https://doi.org/10.1134/S0036029506020029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029506020029

PACS numbers

Navigation