Skip to main content
Log in

O–H···C hydrogen bond in the methane–water complex

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum chemical calculations were performed at different levels of theory (SCF, DFT, MP2, and CCSD(T)) to determine the geometry and electronic structure of the HOH···CH4 complex formed by water and methane molecules, in which water is a proton donor and methane carbon (sp 3) is an acceptor. The charge distribution on the atoms of the complex was analyzed by the CHelpG method and Hirshfeld population analysis; both methods revealed the transfer of electron charge from methane to water. According to the natural bond orbital (NBO) analysis data, the charge transfer upon complexation is caused by the interaction between the σ orbital of the axial С–H bond of methane directed along the line of the O–H···C hydrogen bridge and the antibonding σ* orbital of the О–H bond of the water molecule. Topological analysis of electron density in the HOH···CH4 complex by the AIM method showed that the parameters of the critical point of the bond between hydrogen and acceptor (carbon atom) for the O–H···C interaction are typical for Н-bonded systems (the magnitude of electron density at the critical point of the bond, the sign and value of the Laplacian). It was concluded that the intermolecular interaction in the complex can be defined as an Н bond of O–H···σ(С–H) type, whose energy was found to be 0.9 kcal/mol in MP2/aug-cc-pVQZ calculations including the basis set superposition error (BSSE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bhattacherjee, Y. Matsuda, A. Fujii, and S. Wategaonkar, ChemPhysChem 14, 905 (2013).

    Article  CAS  Google Scholar 

  2. K. Grzechnik, K. Rutkowski, and Z. Mielke, J. Mol. Struct. 1009, 96 (2012).

    Article  CAS  Google Scholar 

  3. H. S. Biswal and S. Wategaonkar, J. Phys. Chem. A 113, 12774 (2009).

    Article  CAS  Google Scholar 

  4. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford, New York, 1999).

    Google Scholar 

  5. M. Nishio, in Encyclopedia of Supramolecular Chemistry, Ed. by J. L. Atwood and J. W. Steed (Marcel Dekker, New York, 2004).

  6. E. Arunan, G. R. Desiraju, R. A. Klein, et al., Pure Appl. Chem. 83, 1637 (2011).

    CAS  Google Scholar 

  7. S. Glasstone, Trans. Faraday Soc. 33, 200 (1937).

    Article  CAS  Google Scholar 

  8. J. F. J. Dippy, Chem. Rev. 25, 151 (1939).

    Article  CAS  Google Scholar 

  9. D. J. Sutor, Nature 195, 68 (1962).

    Article  CAS  Google Scholar 

  10. D. J. Sutor, J. Chem. Soc., 1105 (1963).

    Google Scholar 

  11. M. Oki and H. Iwamura, J. Am. Chem. Soc. 89, 576 (1967).

    Article  CAS  Google Scholar 

  12. Z. Yoshida and E. Osawa, J. Am. Chem. Soc. 87, 1467 (1965).

    Article  CAS  Google Scholar 

  13. M. F. Perutz, Phil. Trans. R. Soc. A 345, 105 (1993).

    Article  CAS  Google Scholar 

  14. D. A. Rodham, S. Suzuki, R. D. Suenram, et al., Nature 362, 735 (1993).

    Article  CAS  Google Scholar 

  15. E. S. Stoyanov, S. P. Hoffmann, K.-C. Kim, et al., J. Am. Chem. Soc. 127, 7664 (2005).

    Article  CAS  Google Scholar 

  16. M. Saggu, N. M. Levinson, and S. G. Boxer, J. Am. Chem. Soc. 133, 17414 (2011).

    Article  CAS  Google Scholar 

  17. M. Saggu, N. M. Levinson, and S. G. Boxer, J. Am. Chem. Soc. 134, 18986 (2012).

    Article  CAS  Google Scholar 

  18. J. E. del Bene, Chem. Phys. Lett. 24, 203 (1974).

    Article  Google Scholar 

  19. W. G. Read and W. H. Flygare, J. Chem. Phys. 76, 2238 (1982).

    Article  CAS  Google Scholar 

  20. J. A. Shea and W. H. Flygare, J. Chem. Phys. 76, 4857 (1982).

    Article  CAS  Google Scholar 

  21. B. G. de Oliveira, Phys. Chem. Chem. Phys. 15, 37 (2013).

  22. D. Quiñonero, A. Frontera, D. Escudero, et al., Theor. Chem. Acc. 120, 385 (2008).

    Article  Google Scholar 

  23. D. Quiñonero, C. Estarellas, A. Frontera, and P. M. Deyá, Chem. Phys. Lett. 508, 144 (2011).

    Article  Google Scholar 

  24. A. Ebrahimi, M. Habibi, and H. R. Masoodi, Chem. Phys. Lett. 478, 120 (2009).

    Article  CAS  Google Scholar 

  25. S. M. Malathy Sony and M. N. Ponnuswamy, Cryst. Growth Des. 6, 736 (2006).

    Article  Google Scholar 

  26. K. E. Riley, M. Pitonák, J. Cerný, and P. Hobza, J. Chem. Theory Comput. 6, 66 (2010).

    Article  CAS  Google Scholar 

  27. R. Parthasarathi, V. Subramanian, N. Sathyamurthy, and J. Leszczynski, J. Phys. Chem. A 111, 2 (2007).

    Article  CAS  Google Scholar 

  28. D-l. Cao, X-q. Feng, et al., J. Mol. Struct.: THEOCHEM 849, 76 (2008).

    Article  CAS  Google Scholar 

  29. F-d. Ren, D-l. Cao, W-l. Wang, et al., Chem. Phys. Lett. 455, 32 (2008).

    Article  CAS  Google Scholar 

  30. J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980).

    Article  CAS  Google Scholar 

  31. A. E. Reed, F. Weinhold, L. A. Curtiss, and D. J. Pochatko, J. Chem. Phys. 84, 5687 (1986).

    Article  CAS  Google Scholar 

  32. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  33. J. Urban, S. Roszak, and J. Leszczynski, Chem. Phys. Lett. 346, 512 (2001).

    Article  CAS  Google Scholar 

  34. J. J. Szymczak, S. J. Grabowski, S. Roszak, and J. Leszczynski, Chem. Phys. Lett. 393, 81 (2004).

    Article  CAS  Google Scholar 

  35. S. J. Grabowski, W. A. Sokalski, and J. Leszczynski, J. Phys. Chem. A 108, 5823 (2004).

    Article  CAS  Google Scholar 

  36. S. J. Grabowski, W. A. Sokalski, and J. Leszczynski, Chem. Phys. Lett. 432, 33 (2006).

    Article  CAS  Google Scholar 

  37. R. F. W. Bader, Chem. Rev. 91, 893 (1991).

    Article  CAS  Google Scholar 

  38. R. F. W. Bader, Atoms in Molecules, a Quantum Theory (Clarendon, Oxford, 1993).

    Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al., Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford CT, 2013).

    Google Scholar 

  40. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    Article  CAS  Google Scholar 

  41. C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  CAS  Google Scholar 

  42. J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quantum Chem. Symp. 11, 149 (1977).

    Article  CAS  Google Scholar 

  43. G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

    Article  CAS  Google Scholar 

  44. G. E. Scuseria and H. F. Schaefer, J. Chem. Phys. 90, 3700 (1989).

    Article  CAS  Google Scholar 

  45. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  46. M. A. Vincent and I. H. Hillier, Phys. Chem. Chem. Phys. 13, 4388 (2011).

    Article  CAS  Google Scholar 

  47. M. J. Biller and S. Mecozzi, Mol. Phys. 110, 377 (2012).

    Article  CAS  Google Scholar 

  48. M. Majumder, B. K. Mishra, and N. Sathyamurthy, Chem. Phys. 557, 59 (2013).

    CAS  Google Scholar 

  49. S. Karthikeyan, V. Ramanathan, and B. K. Mishra, J. Phys. Chem. A 117, 6687 (2013).

    Article  CAS  Google Scholar 

  50. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  51. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

  52. C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 11, 361 (1990).

    Article  CAS  Google Scholar 

  53. F. Martin and H. Zipse, J. Comput. Chem. 26, 97 (2005).

  54. F. L. Hirshfeld, Theor. Chim. Acta (Berlin) 44, 129 (1977).

    Article  CAS  Google Scholar 

  55. Ya. Gu, T. Kar, and S. Scheiner, J. Am. Chem. Soc. 121, 9411 (1999).

    Article  CAS  Google Scholar 

  56. S. Scheiner, S. J. Grabowski, and T. Kar, J. Phys. Chem. A 105, 10607 (2001).

    Article  CAS  Google Scholar 

  57. P. Hobza and Z. Havlas, Chem. Rev. 100, 4253 (2000).

    Article  CAS  Google Scholar 

  58. S. Scheiner, Hydrogen Bonding: A Theoretical Perspective (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  59. J. Mathieu and R. Panico, Reaction Mechanisms of Organic Chemistry (Hermann, Paris, 1972).

    Google Scholar 

  60. G. Praveena and P. Kolandaivel, J. Mol. Struct. 828, 154 (2007).

    Article  CAS  Google Scholar 

  61. A. N. Isaev, Russ. J. Phys. Chem. A 90, 601 (2016).

    Article  CAS  Google Scholar 

  62. U. Koch and P. L. A. Popelier, J. Phys. Chem. 99, 9747 (1995).

    Article  CAS  Google Scholar 

  63. P. L. A. Popelier, J. Phys. Chem. A 102, 1873 (1998).

    Article  CAS  Google Scholar 

  64. O. Mo, M. Yánez, and J. Elguero, J. Mol. Struct.: THEOCHEM 314, 73 (1994).

    Article  Google Scholar 

  65. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

    Article  CAS  Google Scholar 

  66. E. Cubero, M. Orozco, P. Hobza, and F. J. Luque, J. Phys. Chem. A 103, 6394 (1999).

    Article  CAS  Google Scholar 

  67. S. J. Grabowski and P. Lipkowski, J. Phys. Chem. A 115, 4765 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Isaev.

Additional information

Original Russian Text © A.N. Isaev, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 10, pp. 1497–1504.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, A.N. O–H···C hydrogen bond in the methane–water complex. Russ. J. Phys. Chem. 90, 1978–1985 (2016). https://doi.org/10.1134/S0036024416100150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416100150

Keywords

Navigation