Skip to main content
Log in

First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2–10)

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2–10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO–LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Freivogel, J. Fulara, M. Jakobi, et al., J. Chem. Phys. 103, 54 (1995).

    Article  CAS  Google Scholar 

  2. C. Barrientos, P. Redondo and A. Largo, Chem. Phys. Lett. 343, 563 (2001).

    Article  CAS  Google Scholar 

  3. P. Redondo, C. Barrientos and A. Largo, Chem. Phys. Lett. 335, 64 (2001).

    Article  CAS  Google Scholar 

  4. C.-R. Wang, R.-B. Huang, Z.-Y. Liu, et al., Chem. Phys. Lett. 242, 355 (1995).

    Article  CAS  Google Scholar 

  5. G. Pascoli and H. Lavendy, Chem. Phys. Lett. 312, 333 (1999).

    Article  CAS  Google Scholar 

  6. Y. Ohshima, Y. Endo, and T. Ogata, J. Chem. Phys. 102, 1493 (1995).

    Article  CAS  Google Scholar 

  7. N. Moazzen Ahmadi and F. Zerbetto, J. Chem. Phys. 103, 6343 (1995).

    Article  CAS  Google Scholar 

  8. G. Pascoli and H. Lavendy, J. Phys. Chem. A 103, 3518 (1999).

    Article  CAS  Google Scholar 

  9. G. Pascoli and H. Lavendy, Int. J. Mass Spectrom. 181, 11 (1998).

    Article  CAS  Google Scholar 

  10. A. Largo, A. Cimas, P. Redondo, et al., Int. J. Quantum Chem. 84, 127 (2001).

    Article  CAS  Google Scholar 

  11. R.-B. Huang, C.-R. Wang, Z.-Y. Liu, et al., Z. Phys. D 33, 49 (1995).

    Article  CAS  Google Scholar 

  12. J. Xu, A. Wang, X. Wang, et al., Nano Res. 4, 50 (2011).

    Article  CAS  Google Scholar 

  13. P. Thaddeus, S. Cummins, and R. A. Linke, Astrophys. J. Lett. 283, 45 (1984).

    Article  Google Scholar 

  14. J. Cernicharo, C. A. Gottlieb, M. Guélin, et al., Astrophys. J. Lett. 341, 25 (1989).

    Article  Google Scholar 

  15. M. Ohishi, N. Kaifu, K. Kawaguchi, et al., Astrophys. J. Lett. 345, 83 (1989).

    Article  Google Scholar 

  16. P. Mélinon, P. Kéghélian, and A. Perez, et al., Phys. Rev. B 58, 16481 (1998).

    Article  Google Scholar 

  17. M. Leleyter, Z. Phys. D: At. Mol. Clust. 12, 381 (1989).

    Article  CAS  Google Scholar 

  18. Z.-Y. Liu, C.-R. Wang, R.-B. Huang, et al., Int. J. Mass Spectrom. Ion Process. 141, 201 (1995).

    Article  CAS  Google Scholar 

  19. Z.-Y. Liu, R.-B. Huang, Z.-C. Tang, et al., Chem. Phys. 229, 335 (1998).

    Article  CAS  Google Scholar 

  20. C. Barrientos, P. Redondo, and A. Largo, Chem. Phys. Lett. 320, 481 (2000).

    Article  CAS  Google Scholar 

  21. P. Redondo, A. Largo, F. García, et al., Int. J. Quantum Chem. 84, 660 (2001).

    Article  CAS  Google Scholar 

  22. A. Largo, P. Redondo, and C. Barrientos, J. Phys. Chem. A 106, 4217 (2002).

    Article  CAS  Google Scholar 

  23. G. Li and Z. Tang, J. Phys. Chem. A 107, 5317 (2003).

    Article  CAS  Google Scholar 

  24. A. Zdetsis, B. Engels, M. Hanrath, et al., Chem. Phys. Lett. 302, 288 (1999).

    Article  CAS  Google Scholar 

  25. E. G. Noya and M. Menon, J. Chem. Phys. 119, 3594 (2003).

    Article  Google Scholar 

  26. X. F. Duan, L. W. Burggraf, and L. Huang, Molecules 18, 8591 (2013).

    Article  CAS  Google Scholar 

  27. P. Hohenberg, and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  28. K. Koepernik and H. Eschrig, FPLO-9 code. http://www.FPLOde

  29. I. Opahle, PhD thesis (Tech. Univ., Dresden, 2001)

    Google Scholar 

  30. H. Eschrig, M. Richter, and I. Opahle, in Relativistic Electronic Structure Theory, Ch. II: Applications, Ed. by P. Schwerdtfeger (Elsevier, Amsterdam, 2004), p. 723.

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  32. M. Afshar, M. Babaei, and A. H. Kordbacheh, J. Theor. Appl. Phys. 7, 59 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Afshar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshar, M., Hoseini, S.S. & Sargolzaei, M. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2–10). Russ. J. Phys. Chem. 90, 1405–1412 (2016). https://doi.org/10.1134/S0036024416070360

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416070360

Keywords

Navigation