Skip to main content
Log in

Stereolithography 3D Printing from Suspensions Containing Titanium Dioxide

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In view of the wide use of titanium dioxide, more and more approaches to 3D printing of materials based on it have recently been developed, the most promising if which remains stereolithography 3D printing owing to high resolution and low power consumption. It was studied how the degree of crystallinity of titanium dioxide affects both the properties of the obtained suspensions for stereolithography 3D printing, and the sinterability of the printed bulk materials. It was shown that the use of amorphous titanium dioxide as a precursor increases the fraction of the inorganic phase in the suspension, which leads to a significantly smaller shrinkage in sintering. Despite the high critical energy of polymerization and the low photosensitivity of the produced suspensions, the use of amorphous titanium dioxide enabled one to completely remove the polymer binder by high-temperature annealing without significant deformation of the printed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Nakata and A. Fujishima, J. Photochem. Photobiol., C 13, 169 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

  2. T. Sreethawong, Y. Yamada, T. Kobayashi, et al., J. Mol. Catal. A: Chem. 241, 23 (2005). https://doi.org/10.1016/j.molcata.2005.07.009

    Article  CAS  Google Scholar 

  3. T. An, H. Yang, W. Song, et al., J. Phys. Chem. A 114, 2569 (2010). https://doi.org/10.1021/jp911349y

    Article  CAS  PubMed  Google Scholar 

  4. V. K. Ivanov, V. D. Maksimov, A. S. Shaporev, et al., Russ. J. Inorg. Chem. 55, 150 (2010). https://doi.org/10.1134/S0036023610020026

    Article  CAS  Google Scholar 

  5. I. V. Kolesnik, V. A. Lebedev, and A. V. Garshev, Nanosyst. Physics, Chem. Mat 9 (3), 401. https://doi.org/10.17586/2220-8054-2018-9-3-401-409

  6. V. A. Lebedev, D. A. Kozlov, I. V. Kolesnik, et al., Appl. Catal. 195, 39 (2016). https://doi.org/10.1016/j.apcatb.2016.05.010

    Article  CAS  Google Scholar 

  7. M. A. Anderson, M. J. Gieselmann, and Q. Xu, J. Membr. Sci. 39, 243 (1988). https://doi.org/10.1016/S0376-7388(00)80932-1

    Article  CAS  Google Scholar 

  8. A. Oun, N. Tahri, S. Mahouche-Chergui, et al., Sep. Purif. Technol. 188, 126 (2017). https://doi.org/10.1016/j.seppur.2017.07.005

    Article  CAS  Google Scholar 

  9. O. L. Galkina, V. K. Ivanov, A. V. Agafonov, et al., J. Mater. Chem. B 3, 1688 (2015). https://doi.org/10.1039/C4TB01823K

    Article  CAS  PubMed  Google Scholar 

  10. O. L. Galkina, K. Onneby, P. Huang, et al., J. Mater. Chem. B 3, 7125. https://doi.org/10.1039/C5TB01382H

  11. Z. Li, Y. Qu, X. Zhang, et al., Acta Biomater. 5, 2189 (2009). https://doi.org/10.1016/j.actbio.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  12. M. Rasoulianboroujeni, F. Fahimipour, P. Shah, et al., Mater. Sci. Eng. C 96, 105 (2019). https://doi.org/10.1016/j.msec.2018.10.077

    Article  CAS  Google Scholar 

  13. X. Wang, M. Jiang, Z. Zhou, et al., Composites, Part B 110, 442 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  14. Z. Chen, Z. Li, J. Li, et al., J. Eur. Ceram. Soc. 39, 661 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  CAS  Google Scholar 

  15. A. K. Petrov, Inorg. Mater. 53, 1349 (2017). https://doi.org/10.1134/S0020168517110073

    Article  CAS  Google Scholar 

  16. D. S. Larionov, M. A. Kuzina, P. V. Evdokimov, et al., Russ. J. Inorg. Chem. 65, 312 (2020). https://doi.org/10.1134/S0036023620030079

    Article  CAS  Google Scholar 

  17. A. Tikhonov, P. Evdokimov, E. Klimashina, et al., J. Mech. Behav. Biomed. Mater. 110, 103922 (2020). https://doi.org/10.1016/j.jmbbm.2020.103922

    Article  CAS  PubMed  Google Scholar 

  18. V. I. Putlyaev, P. V. Yevdokimov, S. A. Mamonov, et al., Inorg. Mater. Appl. Res. 10, 1101 (2019). https://doi.org/10.1134/S2075113319050277

    Article  Google Scholar 

  19. A. Elkoro, L. Soler, J. Llorca, et al., Appl. Mater. Today 16, 265 (2019). https://doi.org/10.1016/j.apmt.2019.06.007

    Article  Google Scholar 

  20. W. Jo, B. J. Yoon, H. Lee, et al., Print. Addit. Manuf. 4, 222 (2017). https://doi.org/10.1089/3dp.2017.0033

    Article  Google Scholar 

  21. A. H. Aleni, N. Kretzschmar, A. Jansson, et al., Ceram. Int. 46, 16725 (2020). https://doi.org/10.1016/j.ceramint.2020.03.248

  22. P. He, X. Tang, L. Chen, et al., Adv. Funct. Mater. 28, 1801121 (2018). https://doi.org/10.1002/adfm.201801121

    Article  CAS  Google Scholar 

  23. C. Xu, T. Liu, W. Guo, et al., Adv. Eng. Mater. 22, 1901088 (2020). 10.1002/adem.20190108

    Article  CAS  Google Scholar 

  24. F. Mendez-Arriaga, E. de la Calleja, L. Ruiz-Huerta, et al., Mater. Sci. Semicond. Process 100, 35 (2019). https://doi.org/10.1016/j.mssp.2019.04.034

    Article  CAS  Google Scholar 

  25. L. Bergamonti, C. Bergonzi, C. Graiff, et al., Water Res. 163, 114841 (2019). https://doi.org/10.1016/j.watres.2019.07.008

    Article  CAS  PubMed  Google Scholar 

  26. L. Chen, X. Tang, P. Xie, et al., Chem. Mater. 30, 799 (2018). https://doi.org/10.1021/acs.chemmater.7b04313

    Article  CAS  Google Scholar 

  27. C. Y. Lee, A. C. Taylor, S. Beirne, et al., Adv. Energy Mater. 7, 1701060 (2017). https://doi.org/10.1002/aenm.201701060

    Article  CAS  Google Scholar 

  28. X.-M. Duan, H.-B. Sun, K. Kaneko, et al., Thin Solid Films 453–454, 581 (2004). https://doi.org/10.1016/j.tsf.2003.11.126

    Article  CAS  Google Scholar 

  29. A. Vyatskikh, A. Kudo, S. Delalande, et al., Mater. Today Commun. 15, 288 (2018). https://doi.org/10.1016/j.mtcomm.2018.02.010

    Article  CAS  Google Scholar 

  30. F. Liu, S. Xie, Y. Wang, et al., Rapid Prototyp. J. 24, 1421 (2018). https://doi.org/10.1108/RPJ-03-2017-0041

    Article  Google Scholar 

  31. P. F. Jacobs, Rapid Prototyping & Manufacturing: Fundamentals of StereoLithography (Soc. Manuf. Eng., Dearborn, MI, 1992).

    Google Scholar 

  32. V. Petříček, M. Dušek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  33. S. P. Gentry and J. W. Halloran, J. Eur. Ceram. Soc. 33, 1981 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.033

    Article  CAS  Google Scholar 

  34. S. P. Gentry and J. W. Halloran, J. Eur. Ceram. Soc. 35, 1895 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.006

    Article  CAS  Google Scholar 

  35. Y. Lin and J. W. Stansbury, Polym. Adv. Technol. 16, 195 (2005). https://doi.org/10.1002/pat.562

    Article  CAS  Google Scholar 

  36. V. Tomeckova and J. W. Halloran, J. Eur. Ceram. Soc. 30, 2833 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.027

    Article  CAS  Google Scholar 

  37. S. Mubarak, D. Dhamodharan, N. Divakaran, et al., Nanomaterials 10, 79 (2020). https://doi.org/10.3390/nano10010079

    Article  CAS  PubMed Central  Google Scholar 

  38. A. S. Poluboyarinov, V. I. Chelpanov, V. A. Lebedev, et al., Materials 12, 1472 (2019). https://doi.org/10.3390/ma12091472

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was performed under state assignment on basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Garshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, D.A., Tikhonova, S.A., Evdokimov, P.V. et al. Stereolithography 3D Printing from Suspensions Containing Titanium Dioxide. Russ. J. Inorg. Chem. 65, 1958–1964 (2020). https://doi.org/10.1134/S0036023620120098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620120098

Keywords:

Navigation