Skip to main content
Log in

Effect of the synthesis conditions on the crystal, local, and electronic structure of Ce 3+1-x Ce 4+ x AlO3 + x/2

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cerium monoaluminate Ce 3+1-x Ce 4+ x AlO3+x/2 powders with low contents of Ce4+ cations (х ~ 0.052) were synthesized. A set of modern local structure sensitive methods of analysis, including X-ray absorption spectroscopy and Raman spectroscopy, were used to study the crystal, local, and electronic structures of the synthesized compounds. The degree of reduction and the thermal stability to oxidation of reduced powders depend not only on the reduction conditions but also on the conditions of heat pretreatment of the initial samples. It was concluded that the reaction 4CeAlO3 + O2 ↔ 4CeO2 + 2Al2O3 is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Leonov, High-Temperature Chemistry of Cerium Oxide Compounds (Nauka, Leningrad, 1969) [in Russian].

    Google Scholar 

  2. B. A. Arsen’ev, L. S. Kovba, and Kh. S. Bagdasarov, The Chemistry of Rare Elements (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  3. Q. Yuan, H.-H. Hao-Hong Duan, L.-L. Li, et al., J. Coll. Inter. Sci, 335, 151 (2009).

    Article  CAS  Google Scholar 

  4. V. K. Ivanov, A. B. Shcherbakov, A. E. Baranchikov, et al., Nanocrystalline Ceria: Properties, Synthesis, Application (Izd. Tomsk. Univ., Tomsk, 2013) [in Russian].

    Google Scholar 

  5. V. K. Ivanov, G. P. Kopitsa, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 54, 1857 (2009).

    Article  Google Scholar 

  6. V. K. Ivanov, A. E. Baranchikov, O. S. Polezhaeva, et al., Russ. J. Inorg. Chem. 55, 325 (2010).

    Article  CAS  Google Scholar 

  7. O. V. Safonova, A. A. Guda, C. Paun, et al., J. Phys. Chem. 118, 1974.

  8. E. M. Moroz, Russ. Chem. Rev. 80, 293 (2011).

    Article  CAS  Google Scholar 

  9. J. Kašpar, M. Graziani, and P. Fornasiero, Handbook on the Physics and Chemistry of Rare Earths: The Role of Rare Earths in Catalysis, Ed. by K. A. Gschneidner, and L. Eyring (Elsevier Science, Amsterdam, 2000), Vol. 29, p. 159.

    Article  Google Scholar 

  10. S. A. Venâncio and P. E. V. de Miranda, Ceram. Int. 37, 3139 (2011).

    Article  Google Scholar 

  11. A. I. Mikhailichenko, E. B. Mikhlin, and Yu. B. Patrikeev, Rare-Earth Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  12. P. Maestro and D. Huguenin, J. Alloys Compd. 225, 520 (1995).

    Article  CAS  Google Scholar 

  13. A. Feteira, D. C. Sinclair, and M. T. Lanagan, J. Appl. Phys. 101, 064110 (2007).

    Article  Google Scholar 

  14. T. Shishido, S. Okada, Kudou K. Kunio, et al., Pacific Sci. Rev. 10, 45 (2008).

    Google Scholar 

  15. L. Vasylechko, A. Senyshyn, D. Trots, et al., J. Solid State Chem. 180, 1277 (2007).

    Article  CAS  Google Scholar 

  16. G. R. Rao and B. G. Mishra, Bull. Catal. Soc. Ind. 2, 122 (2003).

    Google Scholar 

  17. P. A. Deshpande, S. T. Aruna, and G. Madras, Catal. Sci. Technol. 1, 1683 (2011).

    Article  CAS  Google Scholar 

  18. P. A. Deshpande, S. T. Aruna, and G. Madras, Clean Soil, Air, Water 39, 259 (2011).

    Article  CAS  Google Scholar 

  19. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).

    Article  CAS  Google Scholar 

  20. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).

    Article  Google Scholar 

  21. V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Praha, Czech. Republic, Institute of Physics, 2006.

    Google Scholar 

  22. K. V. Klementiev, http://www.cells.es/old/Beamlines/CLAESS/software/xanda.html.

  23. B. M. Reddy, A. Khan, P. Lakshmanan, et al., J. Phys. Chem. B 109, 3355 (1979).

    Article  Google Scholar 

  24. G. Gouadec and Ph. Colomban, Prog. Cryst. Growth Charact. Mater. 53, 1 (2007).

    Article  CAS  Google Scholar 

  25. I. R. Lewis and H. G. V. Edwards, Handbook of Raman Spectroscopy (Marcel Dekker, New York, 2001).

    Google Scholar 

  26. A. V. Soldatov, T. S. Ivanchenko, S. Della Longa, et al., Phys. Rev. B 50, 5074 (1994).

    Article  CAS  Google Scholar 

  27. V. Fernandes, I. L. Graff, J. Varalda, et al., J. Electrochem. Soc. 159, 27 (2012).

    Article  Google Scholar 

  28. D. I. Khomskii, Usp. Fiz. Nauk 129, 443 (1979).

    Article  CAS  Google Scholar 

  29. P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. 117, 2266 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, A.P. Menushenkov, Ya.V. Zubavichus, A.S. Sharapov, V.A. Kabanova, A.A. Yastrebtsev, L.A. Arzhatkina, N.A. Tsarenko, A.M. Strel’nikova, V.V. Kurilkin, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 2, pp. 238–244.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Menushenkov, A.P., Zubavichus, Y.V. et al. Effect of the synthesis conditions on the crystal, local, and electronic structure of Ce 3+1-x Ce 4+ x AlO3 + x/2 . Russ. J. Inorg. Chem. 61, 225–231 (2016). https://doi.org/10.1134/S0036023616020170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616020170

Keywords

Navigation