Skip to main content
Log in

Plasmon polaritons at the boundary between a dielectric and a nanocomposite with metallic inclusions

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Properties of surface plasmon polaritons at the interface formed in a dielectric matrix by a region without inclusions and by a region with metallic nanoinclusions have been investigated. The region with inclusions is a nanocomposite in which the dielectric constant has resonance behavior caused by the plasmon resonance of metallic nanoinclusions. The frequency dependences of the propagation constant and the transverse components of the wave vector, depth of penetration, mean free path, group velocity, and longitudinal energy flux have been obtained based on the solution to the boundary-value problem and numerical analysis. A substantial influence of the dielectric constant of the matrix of the structure on the wave characteristics of surface polaritons has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Levy and D. J. Bergman, “Clausius-Mossotti approximation for family of nonlinear composites,” Phys. Rev. B: Condens. Matter 46, 7189–7192 (1992).

    Article  Google Scholar 

  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

    Book  Google Scholar 

  3. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, “Optical properties of porous-system-based nanocomposites,” Phys.—Usp. 50, 595–612 (2007).

    Article  Google Scholar 

  4. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B: Condens. Mater. 54, 11245–11251 (1996).

    Article  Google Scholar 

  5. A. N. Oraevskii and I. E. Protsenko, “High refractive index and other optical properties of heterogeneous media,” JETP Lett. 72, 445–448 (2000).

    Article  Google Scholar 

  6. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010).

    Book  Google Scholar 

  7. Metamaterials: Physics and Engineering Explorations, Ed. by N. Engheta and R. W. Ziolkowski (Wiley-IEEE, New York, 2006).

    Google Scholar 

  8. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007; NITs Regul. Khaotich. Dinam., Izhevsk, 2011).

    Google Scholar 

  10. M. M. Siglas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Electromagnetic wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B: Condens. Matter 49, 11080–11087 (1994).

    Article  Google Scholar 

  11. S. Ya. Vetrov, A. Yu. Avdeeva, and I. V. Timofeev, “Spectral properties of a one-dimensional photonic crystal with a resonant defect nanocomposite layer,” J. Exper. Theor. Phys. 113, 755–761 (2011).

    Article  Google Scholar 

  12. S. G. Moiseev, V. A. Ostatochnikov, and D. I. Sementsov, “Defect mode suppression in a photonic crystal structure with a resonance nanocomposite layer,” Quant. Electron. 42, 557–560 (2012).

    Article  Google Scholar 

  13. Surface Polaritrons, Ed. by V. M. Agranovich and D. L. Mills (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  14. L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge Univ. Press, Cambridge, U.K., 2006; Fizmatlit, Moscow, 2009).

    Google Scholar 

  15. V. S. Zuev, A. M. Leontovich, and V. V. Lidskii, “Cherenkov excitation of surface waves,” JETP Lett. 91, 115–118 (2010).

    Article  Google Scholar 

  16. A. A. Basharin and N. L. Men’shikh, “Ultraslow surface plasmons in metamaterial waveguides,” JETP Lett. 93, 688–692 (2011).

    Article  Google Scholar 

  17. Y. O. Averkov and V. M. Yakovenko, “Excitation of oblique surface electromagnetic waves at an anisotropically conducting artificial interface by means of the attenuated-total-reflection method,” J. Opt. Soc. Am. B 28, 155–158 (2011).

    Article  Google Scholar 

  18. D. G. Baranov, A. P. Vinogradov, and C. R. Simovski, “Perfect absorption at Zenneck wave to plane wave transition,” Metamaterials 6, 70–75 (2012).

    Article  Google Scholar 

  19. D. G. Sannikov and D. I. Sementsov, “Surface polaritons at the magnetized semiconductor-dielectric interface,” Phys. Solid State 55, 2324–2330 (2013).

    Article  Google Scholar 

  20. S. V. Sukhov, “Nanocomposite material with the unit refractive index,” Quant. Electron. 35, 741–744 (2005).

    Article  Google Scholar 

  21. V. Yannopapas, A. Modinos, and N. Stefanou, “Scattering and absorption of light by periodic and nearly periodic metallodielectric structures,” Optic. Quantum. Electronics 34, 227–234 (2002).

    Article  Google Scholar 

  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983).

    Article  Google Scholar 

  23. L. D. Landau, L. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media 2nd ed. (Butterworth-Heinemann, 1984); 8th ed. (Fizmatlit, Moscow, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Sementsov.

Additional information

Original Russian Text © D.A. Evseev, D.I. Sementsov, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 8, pp. 787–794.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evseev, D.A., Sementsov, D.I. Plasmon polaritons at the boundary between a dielectric and a nanocomposite with metallic inclusions. Phys. Metals Metallogr. 116, 745–752 (2015). https://doi.org/10.1134/S0031918X15080037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15080037

Keywords

Navigation