Skip to main content
Log in

Symmetry analysis of complex oxides of transition metals

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Some specific properties of antiferromagnetically ordered crystals, such as the antiferromagnetic photovoltaic effect, interaction of spin waves with polar optical phonons, and the effect of this interaction on the structural phase transitions and magnetic transitions into incommensurate structures, have been considered based on the group-theoretical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ya. Lyubarskii, Group Theory and Its Application in Physics (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  2. R. S. Knox and A. Gold, Symmetry in the Solid State (Benjamin, New York, 1964; Moscow: Nauka, 1970).

    Google Scholar 

  3. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1974).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media. Course of Theoretical Physics. Vol. 8 (Pergamon, New York, 1960; Fizmatlit, Moscow, 1982, 2nd ed.).

    Google Scholar 

  5. V. L. Indenbom, “Isomorphism of Schubnikov and Fedorov groups,” Kristallografiya 4, 619–621 (1959).

    Google Scholar 

  6. A. Niggli, “Zur systematic and gruppentheoretischen Ableitung der symmetrie-, antisymmetrie-, enturtung-symmetrie-Gruppen,” Z. Cryst. 111, 288–300 (1959).

    Google Scholar 

  7. Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction Study of Magnets (Atomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  8. O. V. Kovalev, Irreducible and Induced Representations of Space Groups (Moscow: Nauka, 1986), [in Russian].

    Google Scholar 

  9. H. Poulet and J. P. Mathieu, Spectres de vibration et symétrie des cristaux (Gordon and Breach, Paris, 1970; Mir,; Moscow, 1973).

    Google Scholar 

  10. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics (Moscow: Nauka, 1975), [in Russian].

    Google Scholar 

  11. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Moscow: Fizmatlit, 2001) [in Russian].

    Google Scholar 

  12. A. F. Andreev and V. I. Marchenko, “Symmetry and the macroscopic dynamics of magnetic materials,” Sov. Phys. Usp. 23, 21–34 (1980).

    Article  Google Scholar 

  13. L. D. Landau and E. M. Lifshits, Statistical Physics. Part 1. Course of Theoretical Physics. Vol. 5 (Pergamon, New York, 1960; Fizmatlit, Moscow, 1976).

    Google Scholar 

  14. O. V. Kovalev, “Calculation of magnetic crystal symmetry,” Fiz. Tverd. Tela 5, 3156–3172 (1963).

    Google Scholar 

  15. B. I. Sturman and V. M. Fridkin, The photovoltaic and photorefractive effects in non-centrosymmetric materials (Gordon and Breach, Philadelphia, 1992; Moscow: Nauka, 1992).

    Google Scholar 

  16. A. S. Davydov, Quantum Mechanics (Moscow: Nauka, 1973) [in Russian].

    Google Scholar 

  17. V. V. Men’shenin and E. A. Turov, “The antiferromagnetic photovoltaic effect,” JETP Lett. 72, 14–17 (2000).

    Article  Google Scholar 

  18. A. I. Mitsek and V. G. Shavrov, “Piezomagnetism in antiferromagnets and ferrimagnets,” Fiz. Tverd. Tela 6, 210–218 (1964).

    Google Scholar 

  19. V. V. Men’shenin, “Antiferromagnetic photogalvanic effect in orthoaluminates,” Phys. Solid State 46, 2081–2085 (2004).

    Article  Google Scholar 

  20. K. N. R. Tailor and M. I. Darby, Physics of Rare-Earth Solids (Wiley, New York, 1972; Moscow: Mir, 1974).

    Google Scholar 

  21. H. Schuchert, S. Hufner, and R. Faulhaber, “Optical investigation of DyFeO3,” Z. Phys. 222, 105–112 (1969).

    Article  Google Scholar 

  22. V. I. Belinicher and B. I. Sturman, “Phonon mechanism of the photogalvanic effect,” Fiz. Tverd. Tela 20, 821–829 (1978).

    Google Scholar 

  23. V. V. Men’shenin, “Phonon mechanism of the antiferromagnetic photogalvanic effect,” Phys. Solid State 45, 2131–2125 (2003).

    Article  Google Scholar 

  24. E. A. Turov, V. V. Men’shenin, and V. V. Nikolaev, “Acoustics of magnetoelectric antiferromagnets: Tetragonal crystals,” J. Exp. Theor. Phys. 77, 1014–1020 (1993).

    Google Scholar 

  25. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972; Moscow: Mir, 1974).

    Book  Google Scholar 

  26. A. A. Gorbatsevich, Yu. V. Kopaev, and V. V. Tugushev, “Anomalous nonlinear effects upon phase transitions to the ferroelectric and magnetoelectric state,” Sow. Phys. JETP 58, 643–651 (1983).

    Google Scholar 

  27. Yu. A. Artamonov, A. A. Gorbatsevich, and Yu. V. Kopaev, Photovoltaic effect in an orbital antiferromagnet,” JETP 74, 296–306 (1992).

    Google Scholar 

  28. Yu. A. Artamonov and A. A. Gorbatsevich, “Symmetry and dynamics of systems with toroidal moments,” J. Exp. Theor. Phys. 62, 621–629 (1985).

    Google Scholar 

  29. Akhiezer, A.J., Baryakhtar, V.G. and Peletminskii, S.V., Spin Waves (Moscow: Nauka, 1967) [in Russian].

    Google Scholar 

  30. L. D. Landau and E. M. Lifshit, Quantum Mechanics Non-Relativistic Theory. Course of Theoretical Physics. Vol. 3 (Nauka, Moscow, 1974; Pergamon, New York, 1977).

    Google Scholar 

  31. V. G. Bar’yakhtar, I. M. Vitebskii, and D. A. Yablonskii, “Symmetry and magnetic-resonance frequencies in magnetically ordered crystals” J. Exp. Theor. Phys. 49, 703–707 (1979).

    Google Scholar 

  32. V. V. Men’shenin, “Interaction of optical phonons with magnons in orthorhombic crystals. Effect of a magnetic field on structural phase transitions,” Phys. Met. Metallogr. 103, 435–445 (2007).

    Article  Google Scholar 

  33. V. L. Ginzburg, “Some notes on the second-order phase transitions and microscopic theory of ferroelectrics,” Fiz. Tverd. Tela 2, 2031–2043 (1960).

    Google Scholar 

  34. W. Cochran, “Crystal stability and the theory of ferroelectricity,” Phys. Rev. Lett. 3, 412–414 (1959).

    Article  Google Scholar 

  35. R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974; Mir, Moscow, 1975).

    Google Scholar 

  36. I. A. Zobkalo, V. A. Polyakov, O. P. Smirnov, S. V. Gavrilov, V. P. Plakhtii, I. V. Golosovskii, and S. N. Sharygin, “Neutron studies of magnetic properties of EuMn2O5,” Fiz. Tverd. Tela 38, 1307–1309 (1996).

    Google Scholar 

  37. E. A. Turov, “Purely antiferromagnetic vibrational mode in a two-sublattice ferromagnetic phase, JETP Lett. 73, 87–89 (2001).

    Article  Google Scholar 

  38. M. Born and Kun Huang, Dynamic Theory of Crystal Lattices (Oxford Univ. Press, Oxford, 1962; Moscow: Inostrannaya Literatura, 1958).

    Google Scholar 

  39. O. E. Kvyatkovskii and E. G. Maksimov, “Microscopic theory of the lattice dynamics and the nature of the ferroelectric instability in crystals,” Sov. Phys. Usp. 31, 1–26 (1988).

    Article  Google Scholar 

  40. E. G. Maksimov, V. I. Zinenko, and N. G. Zamkova, “Ab initio calculations of the physical properties of ionic crystals,” Phys. Usp. 47, 1075–1099 (2004).

    Article  Google Scholar 

  41. V. G. Vaks, Introduction in the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  42. E. I. Golovenchits, V. A. Sanina, and A. V. Babinskii, “Magnetic and structural correlations in EuMn2O5 and BiMn2O5 crystals in the paramagnetic temperature range,” J. Exp. Theor. Phys. 85, 156–162 (1997).

    Article  Google Scholar 

  43. Yu. F. Popov, A. M. Kadomtseva, S. S. Krotov, G. P. Vorob’ev, K. I. Kamilov, M. M. Lukina, and M. M. Tegranchi, “Magnetic and structural phase transitions in YMn2O5 ferromagnetoelectric crystals induced by a strong magnetic field,” J. Exp. Theor. Phys. 96, 961–965 (2003).

    Article  Google Scholar 

  44. G. R. Blake, L. C. Chapon, P. G. Radaelli, S. Park, N. Hur, S. -W. Cheong, and J. Rodriguez-Carvajal, “Spin structure and magnetic frustration in multiferroic RMn2O5 (R = Tb, Ho, Dy),” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 214402 (2005).

    Article  Google Scholar 

  45. Izyumov, Yu.A. and Syromyatnikov, V.N., Phase Transitions and the Symmetry of Crystals (Moscow: Nauka, 1984).

    Google Scholar 

  46. I. E. Dzyaloshinskii, “Theory of helical structures in antiferromagnets. I. Nonmetals,” Zh. Eksper. Teor. Fiz. 46, 1420–1437 (1964).

    Google Scholar 

  47. V. V. Men’shenin, “Interrelation between the soliton lattice and electric polarization in RMn2O5 oxides,” J. Exp. Theor. Phys. 108, 236–240 (2009).

    Article  Google Scholar 

  48. I. E. Dzyaloshinskii, “Theory of helical structures in antiferromagnets,” Zh. Eksper. Teor. Fiz. 47, 992–1008 (1964).

    Google Scholar 

  49. E. T. Whittaker and J. N. Watson, Course of Modern Analysis (Cambridge: Cambridge Univ., 1927; GIFML, Moscow 1963).

    Google Scholar 

  50. L. N. Bulaevskii and D.I. Khomskii, “Commensurability effects and collective excitations in systems with charge-density waves,” J. Exp. Theor. Phys. 47, 971–974 (1978).

    Google Scholar 

  51. V. V. Men’shenin, V. V. Nikolaev, and A. V. Dmitriev, “Antiferromagnet-long-period-structure phase transition in RMn2O5 oxides,” Phys. Met. Metallogr. 112, 25–35 (2011).

    Article  Google Scholar 

  52. A. M. Polyakov, “Particle spectrum in quantum field theory,” JETP Lett. 20, 194–195 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Men’shenin.

Additional information

Original Russian Text © V.V. Men’shenin, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 11, pp. 1121–1157.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shenin, V.V. Symmetry analysis of complex oxides of transition metals. Phys. Metals Metallogr. 115, 1057–1092 (2014). https://doi.org/10.1134/S0031918X14110040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14110040

Keywords

Navigation