Skip to main content
Log in

Nuclear magnetic resonance in magnets with a spiral magnetic structure

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Specific features of nuclear magnetic resonance (NMR) in a ferromagnet with a crystallographic magnetic anisotropy of the easy-plane type placed in a constant magnetic field have been studied. The symmetry of the magnet admits the existence of the Dzyaloshinskii-Moriya interaction, which leads to the formation of a new ground state, namely, a soliton lattice (spiral structure). Within the spin-wave approximation, the following basic local characteristics of the NMR of this structure have been calculated: resonance frequency, enhancement factor, and line broadening and their field dependences have been investigated. The magnetic resonance susceptibility of the electron-nucleus spin system has been calculated; the shape of the NMR absorption line has been analyzed. The problem of the evolution of the NMR absorption line upon the change in the magnitude of an external magnetic field has been solved. The possibility of the experimental detection and investigation of the structural and dynamic features of the spiral magnetic structure by the NMR method is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu. A. Izyumov, Neutron Diffraction on Long-Period Structures (Atomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  2. T. K. Soboleva, E. P. Stefanovskii, and V. V. Tarasenko, “Equilibrium state and elementary excitations in magnets with inhomogeneous exchange-relativistic interaction in an external magnetic field,” Fiz. Tverd. Tela 22, 2353–2359 (1980).

    Google Scholar 

  3. Y. Togava, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A. S. Ovchinnikov, and J. Kishine, “Chiral magnetic soliton lattice on chiral helimagnet,” Phys. Rev. Lett. 108, 107202 (2012).

    Article  Google Scholar 

  4. E. A. Turov, Physical Properties of Magnetically Ordered Crystals. Phenomenological Theory of Spin Waves in Ferromagnets, Antiferromagnets and Weak Ferromagnets (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  5. E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro- and Antiferromagnets (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  6. V. N. Sedyshkin and A. P. Tankeev, “Peculiarities of nuclear magnetic resonance in ferromagnets with 360° domain walls,” Fiz. Met. Metalloved. 67, 1068–1075 (1989).

    Google Scholar 

  7. E. A. Turov, A. P. Tankeev, and M. I. Kurkin, “To the theory of nuclear magnetic resonance susceptibility of multidomain ferromagnets. I. Analysis of local frequencies,” Fiz. Met. Metalloved. 28, 385–401 (1969).

    Google Scholar 

  8. M. I. Kurkin and A. P. Tankeev, “Effects of amplification and dynamical shift of nuclear magnetic resonance frequencies and their connection with magnetic local properties,” Fiz. Met. Metalloved. 42, 915–930 (1976).

    Google Scholar 

  9. E. A. Turov and M. I. Kurkin, “To the theory of nuclear magnetic resonance susceptibility of magnetic substances,” Fiz. Tverd. Tela 10, 3222–3232 (1968).

    Google Scholar 

  10. M. I. Kurkin and E. A. Turov, Nuclear Magnetic Resonance in Magnetically Ordered Substances and Its Application (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  11. E. A. Turov, A. P. Tankeev, and M. I. Kurkin, “To the theory of nuclear magnetic resonance susceptibility of multidomain ferromagnetic. II. Local coefficient of amplification and integral susceptibility,” Fiz. Met. Metalloved. 29, 747–756 (1970).

    Google Scholar 

  12. G. A. Murray and W. Marshall, “A new interpretation of nuclear magnetic resonance in dilute ferromagnetic alloys,” Proc. Phys. Soc. 86, 315–330 (1965).

    Article  Google Scholar 

  13. M. A. Butler, “Wall resonances in ferromagnets,” Int. J. Magn. 34, 131–138 (1973).

    Google Scholar 

  14. M. A. Butler, “Domain wall enhanced NMR in anisotropic ferromagnets,” J. Phys. Soc. Jpn. 34, 1419–1420 (1973).

    Article  Google Scholar 

  15. A. V. Zalesskii, A. M. Savinov, I. S. Zheludev, and A. N. Ivashchenko, “Nuclear magnetic resonance on 57Fe nuclei and spin reorientation in domains and domain boundaries of ErFeO3 and DyFeO3 crystals,” Zh. Eksper. Teor. Fiz. 68, 1449–1459 (1975).

    Google Scholar 

  16. A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, “57Fe nuclear magnetic resonance study of a spatially modulated magnetic structure in BiFeO3,” JETP Lett. 71, 465–468 (2000).

    Article  Google Scholar 

  17. A. V. Zalesskii, A. A. Frolov, T. A. Khimich, and A. A. Bush, “Composition-induced transition of spinmodulated structure into a uniform antiferromagnetic state in a Bi1 − x LaxFeO3 system studied using 57Fe nuclear magnetic resonance,” Phys. Solid State 45, 141–145 (2003).

    Article  Google Scholar 

  18. A. B. Borisov, J. Kishine, I. G. Bostrem, and A. S. Ovchinnikov, “Magnetic soliton transport over topological spin texture in chiral helimagnet with strong easy-plane anisotropy,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 134436 (2009).

    Article  Google Scholar 

  19. N. J. Ghimire, M. A. McGuire, D. S. Parker, B. Sipos, S. Tang, J.-Q. Yan, B. C. Sales, and D. Mandrus, “Magnetic phase transition in single crystals of the chiral helimagnet Cr1/3NbS2,” Phys. Rev. B: Condens. Matter Mater. Phys. 87, 104403 (2013).

    Article  Google Scholar 

  20. C.H. Cobb, V. Jaccarino, M. A. Butler, J. P. Remeika, and H. Yasuoka, “Low temperature 53Cr nuclear magnetic resonance in ferromagnetic single CrBr3 crystal,” Phys. Rev. B 7, 307–318 (1973).

    Article  Google Scholar 

  21. A. V. Zalesskii, A. A. Frolov, A. K. Zvezdin, A. A. Gippius, E. H. Morozova, D. F. Khozeev, A. S. Bush, and B. C. Pokatilov, “Effect of spatial spin modulation on the relaxation and nuclear magnetic resonance frequencies of 57Fe nuclei in a ferroelectric antiferromagnet BiFeO3,” J. Exper. Theor. Phys. 95, 101–105 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Tankeyev.

Additional information

Original Russian Text © A.P. Tankeyev, M.A. Borich, V.V. Smagin, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 3, pp. 248–259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tankeyev, A.P., Borich, M.A. & Smagin, V.V. Nuclear magnetic resonance in magnets with a spiral magnetic structure. Phys. Metals Metallogr. 115, 232–242 (2014). https://doi.org/10.1134/S0031918X14030119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14030119

Keywords

Navigation