, Volume 47, Issue 11, pp 1252-1269
Date: 19 Dec 2013

An embryonic enantiornithine bird and associated eggs from the cretaceous of Mongolia


Enantiornithes is the most speciose clade of Cretaceous birds, but many taxa are known from isolated postcranial skeletons. Two embryonic enantiornithine bird skeletons of Gobipipus reshetovi gen. et sp. nov. from the Upper Cretaceous (Campanian) Barun Goyot Formation of the Gobi Desert in Mongolia provide new insights into the anatomy, radiation, and mode of development of early avialans. In recent times, both enantiornithine and ornithuromorph birds are known from the Barun Goyot Formation as well as from the Djadokhta and Nemegt Formations. The 80-million-year-old Gobipipus skeletons encased within eggshells shows several features characteristic of enantiornithine birds. The wing skeleton and shoulder girdle show morphological features indicating that Gobipipus achieved sophisticated powered flight. Gobipipus reshetovi gen. et sp. nov. is quite distinct from the sympatric enantiornithine species Gobipteryx minuta from the same strata in many anatomical features. Phylogenetic analysis of 26 avialan ingroup taxa based on distribution of 202 characters indicate that Gobipipus is a basal member of enantiornithine birds along with Confuciusornis and shares more characters with ornithuromorphs than previously recognized. The embryonic nature of Gobipipus specimens sheds new light on the developmental history of enantiornithine birds. The well-ossified bones of the fore- and hind limbs, and fusion of many skeletal elements indicate a precocial mode of development in Gobipipus. Apparently Gobipipus hatchlings could walk away from the ground nests as soon as they emerged from their eggs. The asymmetry of egg poles are unique features of Gobipipus eggs (oogenus Gobioolithus) among Cretaceous avialans. The microstructure of the shell in Gobioolithus eggs with the embryos of Gobipipus is typical avian (of ornithoid basic type) and less ratite-like in morphology of the spongy layer than is that in the other possible egg-remains of enantiornitine birds (oofamily Laevisoolithidae).

The article is published in the original.