Skip to main content
Log in

The emergence of molecular machines as a prerequisite of the ancient RNA world evolution

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The problem of the start of biological evolution in the ancient RNA world is considered. It is postulated that the appearance of catalytic RNAs — ribozymes — via spontaneous cis- and trans-rearrangements of polyribonucleotides in primordial Darwin ponds should not have been sufficient for the start of evolution, until a new class of functional RNA, namely energy-dependent molecular machines, arose. The proposed hypothesis is that the simplest and primary type of molecular machines could be nucleoside triphosphate-dependent RNA-based helicases, which were capable of unwinding the stable double-helical RNAs inevitably formed during RNA syntheses on complementary templates. Thereupon, unwinding RNA polymerases could appear as a result of association or fusion of helicases and polyribonucleotide-polymerizing ribozymes. The latter event provided the mechanism of RNA replication using the double-helical RNAs as a communal genofond (gene pool) of a Darwin pond, and thus initiated the fast evolution of the ancient RNA world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartel, D.P. and Szostak, J.W., Isolation of new ribozymes from a large pool of random sequences, Science, 1993, vol. 261, no. 5127, pp. 1411–1418.

    Article  Google Scholar 

  • Benner, S.A., Carrigan, M.A., Ricardo, A., and Frye, F., Setting the stage: The history, chemistry, and geobiology behind RNA, in The RNA world, Gesteland, R.F., Cech, T.R., and Atkins, J.F.N.Y., Eds., New York: CSHL Press, 2006, 3rd ed., pp. 1–21.

    Google Scholar 

  • Chetverin, A.B., Chetverina, H.V., and Munishkin, A.V., On the nature of spontaneous RNA synthesis by Qb replicase, J. Mol. Biol., 1991, vol. 222, no. 1, pp. 3–9.

    Article  Google Scholar 

  • Chetverina, H.V. and Chetverin, A.B., Cloning of RNA molecules in vitro, Nucl. Acids Res., 1993, vol. 21, no. 10, pp. 2349–2353.

    Article  Google Scholar 

  • Chetverina, H.V., Demidenko, A.A., Ugarov, V.I., and Chetverin, A.B., Spontaneous rearrangements in RNA sequences, FEBS Lett., 1999, vol. 450, no. 1, pp. 89–94.

    Article  Google Scholar 

  • Cordin, O., Banroques, J., Tanner, N.K., and Linder, P., The DEAD-box protein family of RNA helicases, Gene, 2006, vol. 367, pp. 17–37.

    Article  Google Scholar 

  • Ellington, A. and Szostak, J., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, vol. 346, no. 6287, pp. 818–822.

    Article  Google Scholar 

  • Gelles, J. and Landick, R., RNA polymerase as a molecular motor, Cell, 1998, vol. 93, pp. 13–16.

    Article  Google Scholar 

  • Gilbert, W., Origin of life: The RNA world, Nature, 1986, vol. 319, no. 6055, p. 618.

    Article  Google Scholar 

  • Gilbert, W. and Souza, S.J., Introns and the RNA world, in The RNA world, Gesteland, R.F., Cech, T.R., and Atkins, J.F.N.Y., Eds., New York: CSHL Press, 1999, 2nd ed., pp. 221–231.

    Google Scholar 

  • Hansen, J.L., Schmeing, T.M., Klein, D.J., Ippolito, J.A., Nissen, P., Ban, N., Moore, P.B., and Steitz, T.A., Progress towards an understanding of the structure and enzymatic mechanism of the large ribosomal subunit, Cold Spring Harb. Symp. Quant. Biol., 2001, vol. 66, pp. 33–42.

    Article  Google Scholar 

  • Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E., and Bartel, D.P., RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension, Science, 2001, vol. 292, no. 5520, pp. 1319–1325.

    Article  Google Scholar 

  • Meselson, M. and Stahl, F.W., The replication of DNA in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1958, vol. 44, no. 7, pp. 671–682.

    Article  Google Scholar 

  • Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B., and Steitz, T.A., RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 9, pp. 4899–4903.

    Article  Google Scholar 

  • Nudler, E., RNA polymerase active center: the molecular engine of transcription, Annu. Rev. Biochem., 2009, vol. 78, pp. 335–361.

    Article  Google Scholar 

  • Oparin, A.I., Proiskhozhdenie zhizni (Origin of life), Moscow: Moskovskii rabochii, 1924.

    Google Scholar 

  • Robertson, D.L. and Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 1990, vol. 344, no. 6265, pp. 467–468.

    Article  Google Scholar 

  • Saenger, W., Principles of nucleic acid structure, Cantor, C.R., Ed., Springer Advanced Texts in Chemistry, vol. 4, New York: Springer-Verlag, 1984.

  • Spirin, A.S., Ancient RNA world, Paleontol. J., 2010, vol. 44, no. 7, pp. 737–746.

    Article  Google Scholar 

  • Spirin, A.S., RNA polymerase as a molecular machine, Mol. Biol., 2002, vol. 36, no. 4, pp. 208–215.

    Google Scholar 

  • Spirin, A.S., The ribosome as a conveying thermal ratchet machine, J. Biol. Chem., 2009, vol. 284, no. 32, pp. 21103–21119.

    Article  Google Scholar 

  • Spirin, A.S., The RNA world and its evolution, Mol. Biol., 2005, vol. 39, no. 4, pp. 466–472.

    Article  Google Scholar 

  • Spirin, A.S., When, where, and in what environment could the RNA world appear and evolve?, Paleontol. J., 2007, vol. 41, no. 5, pp. 481–488.

    Article  Google Scholar 

  • Spirin, A.S. and Finkelstein, A.V., The ribosome as a Brownian ratchet machine, in Molecular Machines, Frank, J., Ed., New York: Cambridge Univ. Press, 2011, pp. 158–190.

    Chapter  Google Scholar 

  • Steitz, T.A., DNA polymerases: structural diversity and common mechanism, J. Biol. Chem., 1999, vol. 274, no. 25, pp. 17395–17398.

    Article  Google Scholar 

  • Steitz, T.A., Visualizing polynucleotide polymerase machines at work, EMBO J., 2006, vol. 25, no. 15, pp. 3458–3468.

    Article  Google Scholar 

  • Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K., Structural compensation for the deficit of RRNA with proteins in the mammalian mitochondrial ribosome, J. Biol. Chem., 2001, vol. 276, no. 35, pp. 21724–21736.

    Article  Google Scholar 

  • Tuerk, C. and Gold, L., Systematic evolution of ligands by exponential enrichment, Science, 1990, vol. 249, no. 4968, pp. 505–510.

    Article  Google Scholar 

  • Wochner, A., Attwater, J., Coulson, A., and Holliger, P., Ribozyme-catalyzed transcription of an active ribozyme, Science, 2011, vol. 332, no. 6026, pp. 209–212.

    Article  Google Scholar 

  • Woese, C.R., The universal ancestor, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 12, pp. 6854–6859.

    Article  Google Scholar 

  • Zimmer, C., On the Origin of Life on Earth, Science, 2009, vol. 323, no. 5911, pp. 198–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Spirin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spirin, A.S. The emergence of molecular machines as a prerequisite of the ancient RNA world evolution. Paleontol. J. 47, 1016–1029 (2013). https://doi.org/10.1134/S0031030113090190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030113090190

Keywords

Navigation