Skip to main content
Log in

Specific features of photoprocesses in the dye merocyanine 540 and its complexes with water

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The electronic structure and spectral-luminescence properties of the dye merocyanine 540 have been calculated within the framework of the semiempirical quantum-chemical method of partial neglect of differential overlap (PNDO) with spectroscopic parameterization. The trans and cis conformations of the molecule, as well as the trans–cis photoisomerization process, have been considered. The calculation has been performed for an isolated molecule of the merocyanine 540 and its complex with water. The results of the calculation have been compared with the experimental spectral-luminescence characteristics of the molecule in different solvents. It has been shown that there is a good agreement between the calculated and experimental spectra, the nature of the excited states, and photoprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, Solar Energy Mater. Solar Cells 80, 47 (2003).

    Article  Google Scholar 

  2. P. G. P. Ang and A. F. Sammels, US Patent No. 4125182 (1980).

  3. S. A. Curran, D. L. Carroll, and L. D. Dewald, US Patent No. 2009/0301565A1 (2009).

  4. T. G. Easton, J. E. Valinsky, and E. Reich, Cell 13, 475 (1978).

    Article  Google Scholar 

  5. J. E. Valinsky, T. G. Easton, and E. Reich, Cell 13, 487 (1978).

    Article  Google Scholar 

  6. L. McEloy, R. A. Schlegel, P. Williamson, and B. J. del Buono, J. Leukocyte Biol. 44, 337 (1998).

    Google Scholar 

  7. G. S. Anderson, K. Miyagi, R. W. Sampson, and F. Sieber, J. Photochem. Photobiol., Ser. B 68, 101 (2002).

    Article  Google Scholar 

  8. S. Pervaiz, M. Battaglino, J. L. Matthews, and K. S. Gulliya, Cancer Chemother. Pharmacol. 31, 467 (1993).

    Article  Google Scholar 

  9. J. L. Hirpara, M. A. Seyed, K. W. Loh, H. Dong, R. M. Kini, and S. Pervaiz, Blood 5, 1733 (2000).

    Google Scholar 

  10. J. M. O’Brien, D. K. Gaffney, T. P. Wang, and F. Sieber, Blood 80, 277 (1992).

    Google Scholar 

  11. J. Davila, A. Harriman, and K. S. Gullya, Photochem. Photobiol. 53, 1 (1991).

    Article  Google Scholar 

  12. L. G. Lum, M. Yamagami, B. R. Giddings, I. Joshi, S. L. Schober, L. L. Sensenbrenner, and F. Sieber, Blood 77, 2701 (1991).

    Google Scholar 

  13. A. V. Kulinich and A. A. Ishchenko, Russ. Chem. Rev. 78, 141 (2009).

    Article  ADS  Google Scholar 

  14. B. Cunderlikova and L. Sikurova, Chem. Phys. 263, 415 (2001).

    Article  ADS  Google Scholar 

  15. S. Basu, S. De, and B. B. Bhowmik, Spectrochim. Acta A 66, 1255 (2007).

    Article  ADS  Google Scholar 

  16. N. S. Dixit and R. Mackay, J. Am. Chem. Soc. 105, 2928 (1983).

    Article  Google Scholar 

  17. P. R. Dragsten and W. W. Webb, Biochem. Am. Chem. Soc. 17, 5228 (1978).

    Google Scholar 

  18. P. Bilski, T. McDevitt, and C. Chignell, Photochem. Photobiol. 69, 671 (1999).

    Article  Google Scholar 

  19. P. F. Aramendia, M. Krieg, N. C. Nitsch, E. Bittersmann, and S. E. Braslavssky, Photochem. Photobiol. 48, 187 (1988).

    Article  Google Scholar 

  20. A. C. Benniston, K. S. Gulliya, and A. Harriman, J. Chem. Soc., Faraday Trans. 93, 2491 (1997).

    Article  Google Scholar 

  21. M. Hoebeke, A. Seret, J. Piette, and A. van de Vorst, J. Photochem. Photobiol., Ser. B 1, 431 (1988).

    Google Scholar 

  22. V. Gangamallaiah and G. B. Dutt, J. Chem. Phys. 134, 024706 (2011).

    Article  ADS  Google Scholar 

  23. E. R. Kashapova, O. K. Bazyl, V. A. Svetlichnyi, A. A. Ishchenko, and A. V. Kulinich, Opt. Spectrosc. 110, 9 (2011).

    Article  ADS  Google Scholar 

  24. P. Mach, J. Urban, and J. Leszczynski, Int. J. Quantum Chem. 75, 741 (1999).

    Article  Google Scholar 

  25. P. Mach, J. Urban, and J. Leszczynski, Int. J. Quantum Chem. 87, 265 (2002).

    Article  Google Scholar 

  26. G. V. Maier, V. Ya. Artyukhov, O. K. Bazyl, T. N. Kopylova, R. T. Kuznetsova, N. R. Rib, and I. V. Sokolova, Electronically Excited States and Photochemistry of Organics Compounds (Nauka, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  27. X. F. Xu, A. Kahan, S. Zilberg, and Y. Haas, J. Phys. Chem. A 113, 9779 (2009).

    Article  Google Scholar 

  28. L. V. Levshin and A. M. Saletsky, Optical Methods of Investigation of Molecular Systems (Mosk. Gos. Univ., Moscow, 1994) [in Russian].

    Google Scholar 

  29. A. I. Kitaigorodskii, P. M. Zorkii, and V. K. Bel’skii, Structure of Organic Substances (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  30. Reference Book of Chemists (Khimiya, Leningrad, 1971), Vol. 1 [in Russian].

  31. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  ADS  Google Scholar 

  32. T. Scroco and J. Tomasi, Adv. Quant. Chem.} 11, 115 (1978).

    Article  Google Scholar 

  33. R. N. Nurmukhametov, Absorption and Luminescence of Aromatic Compounds (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  34. L. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975; Inostr. Liter., Moscow, 1963).

    Google Scholar 

  35. O. K. Bazyl, V. Ya. Artyukhov, and G. V. Maier, High Energy Chem. 44, 113 (2010).

    Article  Google Scholar 

  36. V. G. Plotnikov and B. A. Dolgikh, Opt. Spectrosc. 43, 522 (1977).

    ADS  Google Scholar 

  37. V. G. Plotnikov, B. A. Dolgikh, and V. M. Komarov, Opt. Spectrosc. 43, 634 (1977).

    ADS  Google Scholar 

  38. G. V. Mayer, Photophysical Processes and Generation Ability of Aromatic Molecules (Tomsk. Univ., Tomsk, 1992) [in Russian].

    Google Scholar 

  39. O. K. Bazyl, V. A. Svetlichnyi, V. Ya. Artyukhov, and A. A. Ishchenko, Opt. Spectrosc. 105, 339 (2008).

    Article  ADS  Google Scholar 

  40. D. Mandal, S. K. Pal, D. Sukul, and K. Bhattacharyya, J. Phys. Chem. A 103, 8156 (1999).

    Article  Google Scholar 

  41. Z. M. Muldakhmetov, B. F. Minaev, and G. A. Ketsle, Optical and Magnetic Properties of the Triplet State (Nauka, Alma-Ata, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Bazyl’.

Additional information

Original Russian Text © O.K. Bazyl’, V.A. Svetlichnyi, G.V. Maier, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 2, pp. 206–215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazyl’, O.K., Svetlichnyi, V.A. & Maier, G.V. Specific features of photoprocesses in the dye merocyanine 540 and its complexes with water. Opt. Spectrosc. 121, 190–199 (2016). https://doi.org/10.1134/S0030400X1608004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1608004X

Navigation