Skip to main content
Log in

Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water

  • Lasers and Their Applications
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have studied the effects of the laser fluence on the characteristics of Al nanoparticles produced by pulsed laser ablation of Al plate in deionized water without using surfactant. Five samples of aluminum nanoparticles were synthesized by nanosecond pulsed laser ablation of a high purity aluminum plate in distilled water at five different fluences in the range of 1–3 J/cm2. There is threshold fluence of the laser at which absorption of laser energy by water rises significantly. Absorption of the laser energy by water leads to increase oxygen atoms in the ablation medium and formation of aluminum oxide nanoparticles. By increasing the laser fluence below the threshold magnitude size of produced nanoparticles increase while by increasing the laser fluence above the threshold magnitude size of produced nanoparticles decrease. The UV-Visible-NIR absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the ultraviolet region. TEM and SEM micrographs are used to characterize the produced nanoparticles. The production rate of nanoparticles is increased with increasing the laser fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Noel, J. Hermann, and T. Itina, Appl. Surf. Sci. 253, 6310 (2007).

    Article  ADS  Google Scholar 

  2. M. Darroudi, M.B. Ahmad, R. Zamiri, A. H. Abdullah, N. A. Ibrahim, K. Shameli, and M. S. Husinc, J. Alloys Compd. 509, 1301 (2011).

    Article  Google Scholar 

  3. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, J. Phys. Chem. B 109, 7290 (2005).

    Article  Google Scholar 

  4. L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, J. Phys. Cond. Matt. 18, S1991 (2006).

    Article  ADS  Google Scholar 

  5. H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, Nano Lett. 8, 1410 (2008).

    Article  ADS  Google Scholar 

  6. P. J. Roach, W. H. Woodward, A. W. Castleman Jr., A. C. Reber, and S. N. Khanna, Science 323, 492 (2009).

    Article  ADS  Google Scholar 

  7. C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, J. Am. Chem. Soc. 130, 6761 (2008).

    Article  Google Scholar 

  8. S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, Chem. Mater. 20, 3954 (2008).

    Article  Google Scholar 

  9. X. Zhou, Y. Fang, and P. Zhang, Spectrochim. Acta A 67, 122 (2007).

    Article  ADS  Google Scholar 

  10. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, Anal. Chem. 81, 1397 (2009).

    Article  Google Scholar 

  11. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, Appl. Phys. Lett. 90, 061104 (2007).

    Article  ADS  Google Scholar 

  12. M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y. P. Sun, ACS Appl. Mater. Interfaces 1, 703 (2009).

    Article  Google Scholar 

  13. M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, J. Mater. Chem. 12, 754 (2002).

    Article  Google Scholar 

  14. B. Li, T. Kawakami, and M. Hiramatsu, Appl. Surf. Sci. 210, 171 (2003).

    Article  ADS  Google Scholar 

  15. M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, T. A. Saleh, Appl. Surf. Sci. 256, 298 (2009).

    Article  ADS  Google Scholar 

  16. C. He, T. Sasaki, Y. Zhou, Y. Shimizu, and N. Koshizaki, Adv. Funct. Mater. 17, 3554 (2007).

    Article  Google Scholar 

  17. Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Coll. Interface Sci. 300, 612 (2006).

    Article  Google Scholar 

  18. Q. A. Drmosh, M. A. Gondal, Z. H. Yamani, and T. A. Saleh, Appl. Surf. Sci. 256, 4661 (2010).

    Article  ADS  Google Scholar 

  19. B. Kumar and R. K. Thareja, J. Appl. Phys. 108, 064906 (2010).

    Article  ADS  Google Scholar 

  20. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, Opt. Exp. 17, 12650 (2009).

    Article  ADS  Google Scholar 

  21. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, J. Phys. Chem. B 104, 8333 (2000).

    Article  Google Scholar 

  22. C.-C. Huang, C.-S. Yeh, and C.-J. Ho, J. Phys. Chem. B 108, 4940 (2004).

    Article  Google Scholar 

  23. J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, J. Am. Chem. Soc. 126, 7176 (2004).

    Article  Google Scholar 

  24. S. L. Smitha, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran, Spectrochim. Acta A 71, 186 (2008).

    Article  ADS  Google Scholar 

  25. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, M. Yu. Losytskyy, A. V. Kotko, and A. O. Pinchuk, Phys. Rev. B 79, 235438 (2009).

    Article  ADS  Google Scholar 

  26. E. Akman, B. Genc Oztoprak, M. Gunes, E. Kacar, and A. Demir, Photonics Nanostruct. Fundam. Appl. 9, 276 (2011).

    Article  ADS  Google Scholar 

  27. A. V. Simakin, V. V. Voronov, N. A. Kirichenko, and G. A. Shafeev, Appl. Phys. A 79, 1127 (2004).

    Article  ADS  Google Scholar 

  28. V. Piriyawong, V. Thongpool, P. Asanithi, and P. Limsuwan, Surf. Sci. Direct 32, 1107 (2012).

    Google Scholar 

  29. H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev. 132, 1918 (1963).

    Article  ADS  Google Scholar 

  30. I. Zoric, M. Zach, B. Kasemo, and C. Langhammer, ACS Nano 5, 2535 (2011).

    Article  Google Scholar 

  31. B. S. Rao, B. R. Kumar, V. R. Reddy, T. S. Rao, and G. V. Chalapathi, Chalcogenide Lett. 8, 39 (2011).

    Google Scholar 

  32. S. Barcikowski, A. Hahn, A. V. Kabashin, and B. N. Chichkov, Appl. Phys. 87, 47 (2007).

    Article  Google Scholar 

  33. M. Rashidian and D. Dorranian, Opt. Eng. 51, 089001 (2012).

    Article  ADS  Google Scholar 

  34. D. Dorranian, E. Solati, and L. Dejam, Appl. Phys. A 109, 307 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dorranian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Dorranian, D. Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water. Opt. Spectrosc. 118, 472–481 (2015). https://doi.org/10.1134/S0030400X15030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15030029

Keywords

Navigation