Skip to main content
Log in

Continuous-variable quantum information processing with squeezed states of light

  • Quantum Informatics. Quantum Information Processors
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We investigate experiments of continuous-variable quantum information processing based on the teleportation scheme. Quantum teleportation, which is realized by a two-mode squeezed vacuum state and measurement-and-feedforward, is considered as an elementary quantum circuit as well as quantum communication. By modifying ancilla states or measurement-and-feedforwards, we can realize various quantum circuits which suffice for universal quantum computation. In order to realize the teleportation-based computation we improve the level of squeezing, and fidelity of teleportation. With a high-fidelity teleporter we demonstrate some advanced teleportation experiments, i.e., teleportation of a squeezed state and sequential teleportation of a coherent state. Moreover, as an example of the teleportation-based computation, we build a QND interaction gate which is a continuous-variable analog of a CNOT gate. A QND interaction gate is constructed only with ancillary squeezed vacuum states and measurement-and-feedforwards. We also create continuous-variable four mode cluster type entanglement for further application, namely, one-way quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. L. Braunstein and A. K. Pati, Quantum Information with Continuous Variables (Kluwer, Dordrecht, 2003).

    MATH  Google Scholar 

  2. S.L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).

    Article  ADS  Google Scholar 

  3. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Opt. Lett. 15, 4321 (2007).

    Google Scholar 

  4. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 100, 033602 (2008).

    Article  ADS  Google Scholar 

  5. S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters Phys. Rev. Lett. 70, 1895 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. L. Vaidman, Phys. Rev. A 49, 1473 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).

    Article  ADS  Google Scholar 

  9. D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).

    Article  ADS  Google Scholar 

  10. X. Zhou, D. W. Leung, and I. L. Chuang, Phys. Rev. A 62, 052316 (2000).

    Article  ADS  Google Scholar 

  11. S. D. Bartlett and W. J. Munro, Phys. Rev. Lett. 90, 117901 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

    Article  ADS  Google Scholar 

  13. N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).

    Article  ADS  Google Scholar 

  14. N. C. Menicucci, S. T. Flammia, and O. Pfister, Phys. Rev. Lett. 101, 130501 (2008).

    Article  ADS  Google Scholar 

  15. P. van Loock, J. Opt. Soc. Am. B 24, 340 (2007).

    Article  ADS  Google Scholar 

  16. D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  17. R. Filip, P. Marek, and U. L. Andersen, Phys. Rev. A 71, 042308 (2005).

    Article  ADS  Google Scholar 

  18. J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U.L. Andersen, and A. Furusawa, Phys. Rev. A 76, 060301R (2007).

    Article  ADS  Google Scholar 

  19. J. Yoshikawa, Y. Miwa, A. Huck, U.L. Andersen, P. van Loock, and A. Furusawa, Phys. Rev. Lett. 101, 250501 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Phys. Rev. A 78, 012301 (2008).

    Article  ADS  Google Scholar 

  21. N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, Phys. Rev. A 76, 010302 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Zaidi, N. C. Menicucci, S.T. Flammia, R. Bloomer, M. Pysher, and O. Pfister, Las. Phys. 18, 659 (2008).

    Article  ADS  Google Scholar 

  23. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  24. W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, Hans-A. Bachor, T. Symul, and P.K. Lam, Phys. Rev. A 67, 032302 (2003).

    Article  ADS  Google Scholar 

  25. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, Phys. Rev. A 67, 033802 (2003).

    Article  ADS  Google Scholar 

  26. N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, Phys. Rev. Lett. 94, 220502 (2005).

    Article  ADS  Google Scholar 

  27. H. Yonezawa, S. L. Braunstein, and A. Furusawa, Phys. Rev. Lett. 99, 110503 (2007).

    Article  ADS  Google Scholar 

  28. M. Yukawa, H. Benichi, and A. Furusawa, Phys. Rev. A 77, 022314 (2008).

    Article  ADS  Google Scholar 

  29. S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000).

    MathSciNet  ADS  Google Scholar 

  30. K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Phys. Rev. Lett. 94, 150503 (2005).

    Article  ADS  Google Scholar 

  31. H. Yonezawa, A. Furusawa, and P. van Loock, Phys. Rev. A 76, 032305 (2007).

    Article  ADS  Google Scholar 

  32. U. Leonhardst, Measuring the Quantum State of Light (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  33. G. Breitenbach and S. Schiller, J. Mod. Opt. 44, 2207 (1997).

    ADS  Google Scholar 

  34. S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Memoto, Phys. Rev. Lett. 88, 097904 (2002).

    Article  ADS  Google Scholar 

  35. M. J. Holland, M. J. Collett, and D. F. Walls, Phys. Rev. A 42, 2995 (1990).

    Article  ADS  Google Scholar 

  36. Hans-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, New York, 2004).

    Google Scholar 

  37. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

    Article  ADS  Google Scholar 

  38. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

    Article  ADS  Google Scholar 

  39. P. van Loock, C. Weedbrook, and M. Gu, Phys. Rev. A 76, 032321 (2007).

    Article  ADS  Google Scholar 

  40. P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonezawa, H., Furusawa, A. Continuous-variable quantum information processing with squeezed states of light. Opt. Spectrosc. 108, 288–296 (2010). https://doi.org/10.1134/S0030400X10020189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X10020189

Keywords

Navigation