Skip to main content
Log in

Rabies vaccines: Current status and prospects for development

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Rabies is an infectious disease among humans and animals that remains incurable, despite its longstanding research history. The only way to prevent the disease is prompt treatment, including vaccination as an obligatory component and administration of antirabies immunoglobulin as a supplement. Since the first antirabies vaccination performed in the 19th century, a large number of different rabies vaccines have been developed. Progress in molecular biology and biotechnology enabled the development of effective and safe technologies of vaccine production. Currently, new-generation vaccines are being developed based on recombinant rabies virus strains or on the production of an individual recombinant rabies antigen—glycoprotein (G protein), either as a component of nonpathogenic viruses, or in plants, or in the form of DNA vaccines. In this review, the main modern trends in the development of rabies vaccines have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

CRV:

culturebased rabies vaccine

References

  1. http://www.who.int/mediacentre/factsheets/fs099/ru/

  2. http://www.rg.ru/2012/03/23/beshenstvo-dok.html

  3. Rupprecht C.E., Plotkin S.A. 2012. Rabies vaccines. In: Vaccines, 6th ed., vol.2. Eds. Plotkin S.A., Orenstein W.A., Offit P.A. Scotland: Elsevier, pp. 646–668.

  4. Culbertson C.G., Peck F.B., Jr., Powell H.M. 1956. Duck-embryo rabies vaccine: Study of fixed virus vaccine grown in embryonated duck eggs and killed with beta-propiolactone (BPL). J. Am. Med. Assoc. 162, 1373–1376.

    Article  CAS  PubMed  Google Scholar 

  5. Kissling R.E. 1958. Growth of rabies virus in non-nervous tissue culture. Proc. Soc. Exp. Biol. Med. 98, 223–225.

    Article  CAS  PubMed  Google Scholar 

  6. Fenje P. 1960. A rabies vaccine from hamster kidney tissue cultures: Preparation and evaluation in animals. Can. J. Microbiol. 6, 605–609.

    Article  CAS  PubMed  Google Scholar 

  7. http://www.who.int/rabies/931/en/

  8. Briggs D.J., Nagarajan T., Rupprecht C.E. 2013. Rabies vaccines. In: Rabies: Scientific Basis of the Disease and Its Management, 3rd ed., vol. 13. Ed. Jackson A.C. Oxford: Elsevier, pp. 497–526.

  9. http://www.who.int/immunization/documents/WHO_ pp_rabies_2010_RU.pdf

  10. Movsesyants A.A., Ageenko G.B. 2006. Anti-rabies agents used in the Russian Federation. RET Info. 1, 44–45. https://docs.google.com/document/d/1RpvtqmQbmHc2kK2DEDcD4MBCMQ73gci9ZEhjgg9q-A/edit?pli=10

    Google Scholar 

  11. Mukhacheva A.V., Movsesyants A.A., Alsynbaev M.M. 2014. Selection of optimal methods for purifying protein substances contained in cultural concentrated purified inactivated antirabies vaccine (KOKAV). Epidemiol. Vaktsinoprofilakt. 3, 84–88.

    Google Scholar 

  12. Gribencha S.V., Losin M.A., Gribencha L.F., Nepoklonova I.V. 2012. A new principle of vaccinal virus selection based on the expression level of G protein, the main rabies virus immunogen. Vopr. Virusol. 57, 44–48.

    CAS  PubMed  Google Scholar 

  13. Pukhova N.M., Samuilenko A.Ya., Elakov A.L. 2012. Reference preparation for controlling immunogenicity of animal rabies vaccines. Vet. Vrach. 5–7.

    Google Scholar 

  14. Losich M.A., Nepoklonova I.V., Mukhin A.N., Raev S.A., Seliverstov A.S., Gribencha S.V., Verkhovskii O.A., Aliper T.I. 2012. Revelopment and immunological properties of Rabifel, a new antirabies vaccine. Ross. Vet. Zh. Melkie Domash. Dikie Zhivotn. 10–14.

    Google Scholar 

  15. Avdeeva Zh.I., Alpatova N.A., Akol’zina S.E., Medunitsyn N.V. 2009. Immunoadjuvant effect of cytokines. Tikhook, Med. Zh. 19–22.

    Google Scholar 

  16. Liu X., Yang Y., Sun Z., Chen J., Ai J., Dun C., Fu Z.F., Niu X., Guo X. 2014. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge. PLOS ONE. 9, e87105.

    Article  Google Scholar 

  17. Tao L., Ge J., Wang X., Wen Z., Zhai H., Hua T., Zhao B., Kong D., Yang C., Bu Z. 2011. Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production. Virol. J. 8, 454.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tuffereau C., Leblois H., Benejean J., Coulon P., Lafay F., Flamand A. 1989. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology. 172, 206–212.

    Article  CAS  PubMed  Google Scholar 

  19. Faber M., Faber M.L., Papaneri A., Bette M., Weihe E., Dietzschold B., Schnell M.J. 2005. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J. Virol. 79, 14141–14148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dietzschold M.L., Faber M., Mattis J.A., Pak K.Y., Schnell M.J., Dietzschold B. 2004. In vitro growth and stability of recombinant rabies viruses designed for vaccination of wildlife. Vaccine. 23, 518–524.

    Article  CAS  PubMed  Google Scholar 

  21. Faber M., Li J., Kean R.B., Hooper D.C., Alugupalli K.R., Dietzschold B. 2009. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. U. S. A. 106, 11300–11305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schutsky K., Curtis D., Bongiorno E.K., Barkhouse D.A., Kean R.B., Dietzschold B., Hooper D.C., Faber M. 2013. Intramuscular inoculation of mice with the liveattenuated recombinant rabies virus TriGAS results in a transient infection of the draining lymph nodes and a robust, long-lasting protective immune response against rabies. J. Virol. 87, 1834–1841.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Norton J.E. Jr., Lytle A.G., Shen S., Tzvetkov E.P., Dorfmeier C.L., Mc Gettigan J.P. 2014. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo. PLOS ONE. 9, e87098.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wiktor T.J., Macfarlan R.I., Reagan K.J., Dietzschold B., Curtis P.J., Wunner W.H., Kieny M.P., Lathe R., Lecocq J.P., Mackett M., et al. 1984. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. U. S. A. 81, 7194–7198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cliquet F., Barrat J., Guiot A.L., Cael N., Boutrand S., Maki J., Schumacher C.L. 2008. Efficacy and bait acceptance of vaccinia vectored rabies glycoprotein vaccine in captive foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides), and dogs (Canis familiaris). Vaccine. 26, 4627–4638.

    Article  CAS  PubMed  Google Scholar 

  26. Weyer J., Rupprecht C.E., Nel L.H. 2009. Poxvirusvectored vaccines for rabies: A review. Vaccine. 27, 7198–7201.

    Article  CAS  PubMed  Google Scholar 

  27. Poulet H., Minke J., Pardo M.C., Juillard V., Nordgren B., Audonnet J.C. 2007. Development and registration of recombinant veterinary vaccines. The example of the canarypox vector platform. Vaccine. 25, 5606–5612.

    CAS  PubMed  Google Scholar 

  28. Amann R., Rohde J., Wulle U., Conlee D., Raue R., Martinon O., Rziha H.J. 2013. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J. Virol. 87, 1618–1630.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yarosh O.K., Wandeler A.I., Graham F.L., Campbell J.B., Prevec L. 1996. Human adenovirus type 5 vectors expressing rabies glycoprotein. Vaccine. 14, 1257–1264.

    Article  CAS  PubMed  Google Scholar 

  30. Tims T., Briggs D.J., Davis R.D., Moore S.M., Xiang Z., Ertl H.C., Fu Z.F. 2000. Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine. 18, 2804–2807.

    Article  CAS  PubMed  Google Scholar 

  31. Xiang Z.Q., Gao G.P., Reyes-Sandoval A., Li Y., Wilson J.M., Ertl H.C. 2003. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J. Virol. 77, 10780–10789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Shen C.F., Lanthier S., Jacob D., Montes J., Beath A., Beresford A., Kamen A. 2012. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3). Vaccine. 30, 300–306.

    Article  CAS  PubMed  Google Scholar 

  33. Fehlner-Gardiner C., Rudd R., Donovan D., Slate D., Kempf L., Badcock J. 2012. Comparing ONRAB and RABORAL V-RG® oral rabies vaccine field performance in raccoons and striped skunks, New Brunswick, Canada, and Maine, USA J. Wild. Dis. 48, 157–167.

    Article  Google Scholar 

  34. Yang D.K., Kim H.H., Lee K.W., Song J.Y. 2013. The present and future of rabies vaccine in animals. Clin. Exp. Vaccine Res. 2, 19–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Liu Y., Zhang S., Ma G., Zhang F., Hu R. 2008. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine. Vaccine. 26, 5368–5372.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z., Zhou M., Gao X., Zhang G., Ren G., Gnanadurai C.W., Fu Z.F., He B. 2013. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein. J. Virol. 87, 2986–2993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mc Garvey P.B., Hammond J., Dienelt M.M., Hooper D.C., Fu Z.F., Dietzschold B., Koprowski H., Michaels F.H. 1995. Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (NY). 13, 1484–1487.

    Article  CAS  Google Scholar 

  38. Ashraf S., Singh P.K., Yadav D.K., Shahnawaz M., Mishra S., Sawant S.V., Tuli R. 2005. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J. Biotechnol. 119, 1–14.

    Article  CAS  PubMed  Google Scholar 

  39. Yusibov V., Hooper D.C., Spitsin S.V., Fleysh N., Kean R.B., Mikheeva T., Deka D., Karasev A., Cox S., Randall J., et al. 2002. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine. 20, 3155–3164.

    Article  CAS  PubMed  Google Scholar 

  40. Rojas-Anaya E., Loza-Rubio E., Olivera-Flores M.T., Gomez-Lim M. 2009. Expression of rabies virus G protein in carrots (Daucus carota). Transgenic Res. 18, 911–919.

    Article  CAS  PubMed  Google Scholar 

  41. Loza-Rubio E., Rojas E., Gomez L., Olivera M.T., Gomez-Lim M.A. 2008. Development of an edible rabies vaccine in maize using the Vnukovo strain. Dev. Biol. (Basel). 131, 477–482.

    CAS  Google Scholar 

  42. Loza-Rubio E., Rojas-Anaya E., Lopez J., Olivera Flores M.T., Gomez-Lim M., Tapia-Perez G. 2012. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine. 30, 5551–5556.

    Article  CAS  PubMed  Google Scholar 

  43. Graham B.S. 2013. Advances in antiviral vaccine development. Immunol. Rev. 255, 230–242.

    Article  PubMed  Google Scholar 

  44. Kutzler M.A., Weiner D.B. 2008. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 9, 776–788.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Redding L., Weiner D.B. 2009. DNA vaccines in veterinary use. Expert Rev. Vaccines. 8, 1251–1276.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Li L., Saade F., Petrovsky N. 2012. The future of human DNA vaccines. J. Biotechnol. 162, 171–182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Villarreal D.O., Talbott K.T., Choo D.K., Shedlock D.J., Weiner D.B. 2013. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev. Vaccines. 12, 537–554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kaur M., Garg R., Singh S., Bhatnagar R. 2014. Rabies vaccines: Where do we stand, where are we heading? Exp. Rev. Vaccines. 1–13.

    Google Scholar 

  49. Tuchkov I.V., Nikiforov A.K. 2010. DNA immunization against rabies. Probl. Osobo Opasn. Infekts. 104, 74–78.

    Google Scholar 

  50. Ferraro B., Morrow M.P., Hutnick N.A., Shin T.H., Lucke C.E., Weiner D.B. 2011. Clinical applications of DNA vaccines: Current progress. Clin. Infect. Dis. 53, 296–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hutnick N.A., Myles D.J., Bian C.B., Muthumani K., Weiner D.B. 2011. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr. Opin. Virol. 1, 233–240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Saade F., Petrovsky N. 2012. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines. 11, 189–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ullas P.T., Desai A., Madhusudana S.N. 2012. Rabies DNA vaccines: Current status and future. World J. Vaccines. 2, 36–45.

    Article  CAS  Google Scholar 

  54. Osinubi M.O., Wu X., Franka R., Niezgoda M., Nok A.J., Ogunkoya A.B., Rupprecht C.E. 2009. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine. 27, 7214–7218.

    Article  CAS  PubMed  Google Scholar 

  55. Tesoro Cruz E., Hernandez Gonzalez R., Alonso Morales R., Aguilar-Setien A. 2006. Rabies DNA vaccination by the intranasal route in dogs. Dev. Biol. (Basel). 125, 221–231.

    CAS  Google Scholar 

  56. Bahloul C., Taieb D., Diouani M.F., Ahmed S.B., Chtourou Y., B’ Chir B I., Kharmachi H., Dellagi K. 2006. Field trials of a very potent rabies DNA vaccine which induced long lasting virus neutralizing antibodies and protection in dogs in experimental conditions. Vaccine. 24, 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  57. Kaur M., Saxena A., Rai A., Bhatnagar R. 2010. Rabies DNA vaccine encoding lysosome-targeted glycoprotein supplemented with Emulsigen-D confers complete protection in preexposure and postexposure studies in BALB/c mice. FASEB J. 24, 173–183.

    Article  PubMed  Google Scholar 

  58. Stab V., Nitsche S., Niezold T., Storcksdieck Genannt Bonsmann M., Wiechers A., Tippler B., Hannaman D., Ehrhardt C., Uberla K., Grunwald T., Tenbusch M. 2013. Protective efficacy and immunogenicity of a combinatory DNA vaccine against influenza A virus and the respiratory syncytial virus. PLOS ONE. 8, e72217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Touihri L., Ahmed S.B., Chtourou Y., Daoud R., Bahloul C. 2012. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs. Virol. J. 9, 319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yan J., Corbitt N., Pankhong P., Shin T., Khan A., Sardesai N.Y., Weiner D.B. 2011. Immunogenicity of a novel engineered HIV-1 clade C synthetic consensusbased envelope DNA vaccine. Vaccine. 29, 7173–7181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Obeng-Adjei N., Hutnick N.A., Yan J., Chu J.S., Myles D.J., Morrow M.P., Sardesai N.Y., Weiner D.B. 2013. DNA vaccine cocktail expressing genotype A and C HBV surface and consensus core antigens generates robust cytotoxic and antibody responses in mice and rhesus macaques. Cancer Gene Ther. 20, 652–662.

    Article  CAS  PubMed  Google Scholar 

  62. Yan J., Villarreal D.O., Racine T., Chu J.S., Walters J.N., Morrow M.P., Khan A.S., Sardesai N.Y., Kim J.J., Kobinger G.P., Weiner D.B. 2014. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 32, 2833–2842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Latimer B., Toporovski R., Yan J., Pankhong P., Morrow M.P., Khan A.S., Sardesai N.Y., Welles S.L., Jacobson J.M., Weiner D.B., Kutzler M.A. 2014. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum. Vaccin. Immunother. 10, 2357–2365.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Starodubova.

Additional information

Original Russian Text © E.S. Starodubova, O.V. Preobrazhenskaia, Y.V. Kuzmenko, A.A. Latanova, E.I. Yarygina, V.L. Karpov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 4, pp. 577–584.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubova, E.S., Preobrazhenskaia, O.V., Kuzmenko, Y.V. et al. Rabies vaccines: Current status and prospects for development. Mol Biol 49, 513–519 (2015). https://doi.org/10.1134/S0026893315040172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315040172

Keywords

Navigation