Skip to main content
Log in

Prion-like determinant [NSI +] decreases the expression of the SUP45 gene in Saccharomyces cerevisiae

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Previously, we described and characterized the yeast nonchromosomal determinant [NSI +], which possesses prion properties. This determinant causes a decrease in fidelity of translation termination, which is phenotypically detectable as the nonsense suppression in the strains with decreased functional activity of eRF3 release factor. As a result of the genetic screen, we demonstrated that an increase in the expression of SUP45 that encodes the eRF1 release factor (Sup45), masks, but does not eliminate nonsense suppression in the [NSI +] strains. In the present study, we first demonstrated the direct cause for the nonsense suppression in [NSI +] strains. We demonstrated that [NSI +] decreases the relative amounts of SUP45 mRNA, which causes a decrease in the amounts of Sup45 protein that can be detected in the stationary growth phase. The data obtained suggest the structural protein of [NSI +] seems to be either a transcription factor or participates in the regulation of cellular mRNA stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wickner R.B. 1994. [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science. 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

  2. Derkatch I.L., Bradley M.E., Hong J.Y., Liebman S.W. 2001. Prions affect the appearance of other prions: The story of [PIN]. Cell. 106, 171–182.

    Article  CAS  PubMed  Google Scholar 

  3. Derkatch I.L., Bradley M.E., Zhou P., Chernoff Y.O., Liebman S.W. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI +] prion in Saccharomyces cerevisiae. Genetics. 147, 507–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Du Z., Park K.W., Yu H., Fan Q., Li L. 2008. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nature Genet. 40, 460–465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Alberti S., Halfmann R., King O., Kapila A., Lindquist S. 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 137, 146–158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Patel B.K., Liebman S.W. 2007. “Prion-proof” for [PIN +]: Infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN+]. J. Mol. Biol. 365, 773–782.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Rogoza T., Goginashvili A., Rodionova S., Ivanov M., Viktorovskaya O., Rubel A., Volkov K., Mironova L. 2010. Non-Mendelian determinant [ISP +] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc. Natl. Acad. Sci. U. S. A. 107, 10573–10577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Halfmann R., Wright J.R., Alberti S., Lindquist S., Rexach M. 2012. Prion formation by a yeast GLFG nucleoporin. Prion. 6, 391–399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Suzuki G., Shimazu N., Tanaka M. 2012. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 336, 355–359.

    Article  CAS  PubMed  Google Scholar 

  10. Osherovich L.Z., Weissman J.S. 2001. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI +] prion. Cell. 106, 183–194.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts B.T., Wickner R.B. 2003. Heritable activity: A prion that propagates by covalent autoactivation. Genes Dev. 17, 2083–2087.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Brown J.C., Lindquist S. 2009. A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 23, 2320–2332.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yang W., Yang H., Tien P. 2006. In vitro self-propagation of recombinant PrPSc-like conformation generated in the yeast cytoplasm. FEBS Lett. 580, 4231–4235.

    Article  CAS  PubMed  Google Scholar 

  14. Serio T.R., Cashikar A.G., Kowal A., Sawicki G.J., Moslehi J.J., Serpell L., Arnsdorf M.F., Lindquist S.L. 2000. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 289, 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  15. Saifitdinova A.F., Nizhnikov A.A., Lada A.G., Rubel A.A., Magomedova Z.M., Ignatova V.V., Inge-Vechtomov S.G., Galkin A.P. 2010. [NSI +]: A novel non-Mendelian suppressor determinant in Saccharomyces cerevisiae. Curr. Genet. 56, 467–478.

    Article  CAS  PubMed  Google Scholar 

  16. Nizhnikov A.A., Magomedova Z.M., Rubel A.A., Kondrashkina A.M., Inge-Vechtomov S.G., Galkin A.P. 2012. [NSI +] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes. Curr. Genet. 58, 35–47.

    Article  CAS  PubMed  Google Scholar 

  17. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M.1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kaiser C., Michaelis S., Mitchell A. 1994. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  19. Hanahan D. 1985. DNA Cloning: A Practical Approach. IRL Press.

    Google Scholar 

  20. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  21. Zakharov I.A., Kozhin S.A., Kozhina T.N., Fedorova I.V. 1984. Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods in Saccharomyces Yeast Genetics), Leningrad: Nauka.

    Google Scholar 

  22. Sherman F., Fink G.R., Hancks J.B. 1986. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  23. Livak K., Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods. 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Newnam G.P., Wegrzyn R.D., Lindquist S.L., Chernoff Y.O. 1999. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bradford M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  26. Kiktev D., Moskalenko S., Murina O., Baudin-Baillieu A., Rousset J.P., Zhouravleva G. 2009. The paradox of viable sup45 STOP mutations: A necessary equilibrium between translational readthrough, activity and stability of the protein. Mol. Genet. Genom. 282, 83–96.

    Article  CAS  Google Scholar 

  27. Inge-Vechtomov S.G. 1964. Back mutations to prototrophism in adenine-dependent yeasts. Vestn. Leningr. Gos. Univ. 9, 112–117.

    Google Scholar 

  28. Ivanov M.S., Radchenko E.A., Mironova L.N. 2010. The protein complex Ppz1p/Hal3p and nonsense suppression efficiency in the yeast Saccharomyces cerevisiae. Mol. Biol. (Moscow). 44, 907–914.

    Article  CAS  Google Scholar 

  29. Nizhnikov A.A., Kondrashkina A.M., Antonets K.S., Galkin A.P. 2014. Overexpression of genes encoding asparagine-glutamine-rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae. Russian Journal of Genetics: Applied Research. 4, 122–130.

    Article  Google Scholar 

  30. Nizhnikov A.A., Magomedova Z.M., Saifitdinova A.F., Inge-Vechtomov S.G., Galkin A.P. 2012. Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae. Russ. J. Genet.: Applied Res. 2, 399–405.

    Google Scholar 

  31. Nizhnikov A.A., Magomedova Z.M., Saifitdinova A.F., Inge-Vechtomov S.G., Galkin A.P. 2011. Identification of genes encoding potentially amyloidogenic proteins involved in regulation of nonsense suppression in yeast Saccharomyces cerevisiae. Ekol. Genet. 9, 79–86.

    CAS  Google Scholar 

  32. Cox B.S. 1965. Psi, a cytoplasmic supperssor of supersuppressors in yeast. Heredity. 20, 505–521.

    Article  Google Scholar 

  33. Radchenko E., Rogoza T., Khokhrina M., Drozdova P., Mironova L. 2011. SUP35 expression is enhanced in yeast containing [ISP +], a prion form of the transcriptional regulator Sfp1. Prion. 5, 317–322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nizhnikov A.A., Kondrashkina A.M., Galkin A.P. 2013. Interactions of [NSI +] prion-like determinant with SUP35 and VTS1 genes in Saccharomyces cerevisiae. Russ. J. Genet. 49, 1004–1012.

    Article  CAS  Google Scholar 

  35. Ono B., Yoshida R., Kamiya K., Sugimoto T. 2005. Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae. Genes Genet. Syst. 80, 311–316.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nizhnikov.

Additional information

Original Russian Text © A.M. Kondrashkina, K.S. Antonets, A.P. Galkin, A.A. Nizhnikov, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 5, pp. 790–796.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashkina, A.M., Antonets, K.S., Galkin, A.P. et al. Prion-like determinant [NSI +] decreases the expression of the SUP45 gene in Saccharomyces cerevisiae . Mol Biol 48, 688–693 (2014). https://doi.org/10.1134/S0026893314050069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314050069

Keywords

Navigation