Skip to main content
Log in

The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

“...obtaining a strongly supported tree does not necessarily mean that it is correct.”

F. Delsuc, H. Brinkman, and H. Philippe, 2005

Abstract

The review considers the current problems of molecular phylogenetics based on mitochondrial and chromosomal DNA sequences. The emphasis is placed on mtDNA markers, which are widely employed in reconstructing molecular evolution, but often without a critical analysis of the physiological and biochemical features of mitochondria that affect the adequacy and reliability of the results. In addition to the factors that make mtDNA-based phylogenies difficult to interpret (unrecognized hybridization and introgression events, ancestral polymorphism, and nuclear paralogs of mtDNA sequences), attention is paid to the nonneutrality and unequal mutation rates of mtDNA genes and their fragments, violations of uniparental inheritance of mitochondria, recombination events, natural heteroplasmy, and mtDNA haplotypic diversity. These factors may influence the congruence of phylogenetic inferences and trees constructed for the same organisms with different mtDNA markers or with mitochondrial and nuclear markers. The review supports the viewpoint that mitochondrial genes and their fragments fail to provide reliable evolutionary markers when considered without a thorough study of the environmental conditions and life of the taxa. The influence of external conditions on the metabolism and physiology of mitochondria cannot be taken into account in full nor modeled well enough for phylogenetic applications. It is assumed that mtDNA is valuable as a phylogenetic marker primarily because its complete sequence may be analyzed to identify the apomorphic and synmorphic properties of a taxon and to search for informative nuclear paralogs of mtDNA for phylogeographical studies and estimations of relative evolution times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore W.S. 1995. Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nucleargene trees. Evolution. 49, 718–726.

    Article  Google Scholar 

  2. Wiens J.J., Penkrot T.A. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst. Biol. 51, 69–91.

    Article  PubMed  Google Scholar 

  3. Grechko V.V. Molecular markers in phylogeny and systematics. Russ. J. Genet. 38, 851–868.

  4. Engstrom T.M., Schaffer H.B., McCord W.P. 2004. Multiple data set, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst. Biol. 53, 693–710.

    Article  PubMed  Google Scholar 

  5. McCracken K.G., Sorenson M.D. 2005. Is homology or lineage sorting the source of incongruent mtDNA and nucler gene trees in the stiff-tailed ducks (Nomonycs-Oxyura)? Syst. Biol. 54, 35–55.

    Article  PubMed  Google Scholar 

  6. Skinner A., Donnellan S.C., Hutchinson M.N., Hutchinson R.G. 2005. A phylogenetic analysis of Pseudonaja (Hydrophiinae, Elapidae, Serpentes) based ob mitochondrial DNA sequences. Mol. Phyl. Evol. 37, 558–571.

    Article  CAS  Google Scholar 

  7. Sorenson M.D., Quinn T.W. 1998. Numts: A challenge for avian systematics and population biology. The Auk. 115, 214–221.

    Article  Google Scholar 

  8. Weisrock D.W., Smith S.D., Chan L.M., Biebouw K., Kappeler P.M., Yoder A.D. 2012. Concatenation and concordance in the reconstruction of the mouse lemur phylogeny: An empirical demonstration of the effect of allele sampling in phylogeny. Mol. Biol. Evol. doi 10.1093/molbev/mss008

    Google Scholar 

  9. Greaves S.N.J., Chapple D.G., Gleeson D.M., Daugherty C.H., Ritchie P.A. 2007. Phylogeography of the spotted skink (Oligosoma lineoocellatum) and green skink (O. chloronoton) species complex (Lacertilia: Scincidae) in New Zealand reveals pre-Pleistocene divergence. Mol. Phyl. Evol. 45, 729–739.

    Article  CAS  Google Scholar 

  10. Solovyeva E.N., Poyarkov N.A., Dunaev E.A., Duysenbayeva T.N., Bannikova A.A. 2011. Molecular differentiation and taxonomy of the sunwatcher toadheaded agama species complex Phrynocephalus super-species helioscopus (Pallas, 1771) (Reptilia: Agamidae). Russ. J. Genet. 47, 842–856.

    Article  CAS  Google Scholar 

  11. Brower A.V.Z., DeSalle R., Vogler A. 1996. Gene trees, species trees, and systematics: A cladistic perspective. Annu. Rev. Ecol. Syst. 27, 423–450.

    Article  Google Scholar 

  12. Losos J.B., Jackman T.R., Larson A., De Queirroz K., Rodrigues-Shettino L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science. 279, 2115–2118.

    Article  PubMed  CAS  Google Scholar 

  13. Hanley T.C., Caccone A. 2005. Development of primers to characterization the mitochondrial control region of Galapagos land and marine iguanas (Conolophus and Ambleyrhynchus). Mol. Ecol. Notes. 5, 599–601.

    Article  CAS  Google Scholar 

  14. Kurabayashi A., Sumida M., Yonekawa H., Glaw F., Hasegawa M. 2008. Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantelliid frogs from Madagascar. Mol. Biol. Evol. 25, 874–891.

    Article  PubMed  CAS  Google Scholar 

  15. Ballard J.W.O., Whitlock M.C. 2004. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744.

    Article  PubMed  Google Scholar 

  16. Moritz C., Brown W.M. 1987. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. U. S. A. 84, 7183–7187.

    Article  PubMed  CAS  Google Scholar 

  17. Brown W.M., Prager E.M., Wang A., Wilson A.C. 1982. Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J. Mol. Evol. 18, 225–239.

    Article  PubMed  CAS  Google Scholar 

  18. Tsaousis A.D., Martin D.P., Ladoukakis E.D., Posada D., Zouros E. 2005. Widespread recombination in published animal mtDNA sequences. Mol. Biol. Evol. 22, 925–933.

    Article  PubMed  CAS  Google Scholar 

  19. Castellana S., Vicario S., Saccone C. 2011. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome Biol. Evol. 3, 1067–1079.

    Article  CAS  Google Scholar 

  20. Moritz C., Dowling T.E., Brown W.M. 1987. Evolution of the animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269–292.

    Article  Google Scholar 

  21. Crother B.I., Presh W. 1994. Xantusiid lizards, concern for analysis, and the search for a best estimate of phylogeny: Furter comments. Mol. Phyl. Evol. 3, 272–275.

    Article  CAS  Google Scholar 

  22. Hedges S.B., Bazy R.L. 1994. Reply: Xantusiid lizards and phylogenetic inference. Mol. Phyl. Evol. 3, 275–278.

    Article  Google Scholar 

  23. Palumbi S.R., Baker C.S. 1994. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol. Biol. Evol. 11, 426–435.

    PubMed  CAS  Google Scholar 

  24. Ballard J.W., Kreitman M. 1995. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Evol. 10, 485–489.

    Article  PubMed  CAS  Google Scholar 

  25. Lunt D.H., Hymen B.C. 1997. Animal mitochondrial DNA recombination. Nature. 387, 247.

    Article  PubMed  CAS  Google Scholar 

  26. Curole J.P., Kocher T.D. 1999. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 14, 394–308.

    Article  PubMed  Google Scholar 

  27. Vorontsov N.N. 1999. Razvitie evolyutsionnykh idei v biologii (Development of Evolution Ideas in Biology). Moscow: ABF Publ.

    Google Scholar 

  28. Ballard J.W.O., Chernoff B., James A.C. 2002. Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behaviour in Drosophila simulans. Evolution. 56, 527–545.

    PubMed  Google Scholar 

  29. Zink R.M., Barrowclough G.F. 2008. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17, 2107–2121.

    Article  PubMed  CAS  Google Scholar 

  30. Shoo L.P., Rose R., Doughty P., Austin J.J., Melville J. 2008. Diversification patterns of pebble-mimic dragons are consistent with historical disruption of important habitat corridors in arid Australia. Mol. Phyl. Evol. 48, 528–542.

    Article  CAS  Google Scholar 

  31. Edwards S.V. 2009. Is a new and general theory of molecular systematics emerging? Evolution. 63, 1–19.

    Article  PubMed  CAS  Google Scholar 

  32. Camargo A., Sinervo B., Sites J.W., jr. 2010. Lizards as a model organisms for linking phylogeographic and speciation studies. Mol. Ecol. 19, 3250–3270.

    Article  PubMed  Google Scholar 

  33. Planet P.J. 2006. Tree disagreement: Measuring and testic incongruence in phylogenies. J. Biomed. Inform. 39, 86–102.

    Article  PubMed  CAS  Google Scholar 

  34. Verdue-Ricoy J., Carranza S., Salvator A., BU. S. Ack S.D., Diaz J.A. 2010. Phylogeography of Psammodromus algirus (Lacertidae) revisited: Systematic implications. Amphibia-Reptilia. 31, 576–582.

    Article  Google Scholar 

  35. Godinho R., Crespo E.G., Ferrand N. 2008. The limits of mtDNA phylogeography: Complex patterns of population history in the highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol. Ecol. 17, 4670–4683.

    Article  PubMed  CAS  Google Scholar 

  36. Dolman G., Moritz C. 2006. A multilocus perspective on refugial isolation and divergence in reinforest skinks (Carlia). Evolution. 60, 573–582.

    PubMed  CAS  Google Scholar 

  37. Sequiera F., Alexandrino J., Wess S., Ferrand N. 2008. Documenting the advantage and limitations of different classes of molecular markers in a well-established phylogeographic context: Lessons from the Iberian endemic golden-stripped salamander, Chioglossa lusitanica (Caudata: Salamandridae). Biol. J. Linn. Soc. 95, 371–387.

    Article  Google Scholar 

  38. Leache A.D. 2010. Species tree for spiny lizards (genus Sceloporus): Identifying points of concordance and conflict between nuclear and mitochondrial data. Mol. Phyl. Evol. 54, 162–171.

    Article  CAS  Google Scholar 

  39. Fisher-Reid M.C., Wiens J.J. 2011. What are the consequences of combining nuclear sand mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. BMC Evol. Biol. 11, 300–320.

    Article  PubMed  Google Scholar 

  40. Korpelainen H. 2004. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften. 91, 505–518.

    Article  PubMed  CAS  Google Scholar 

  41. Degnan J.H., Rosenberg N.A. 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 2, e68.

    Article  PubMed  CAS  Google Scholar 

  42. Holland B.R., Benthin S., Lockart P.J., Moulton V., Huber K.T. 2008. Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evol. Biol. 8, 202–213.

    Article  PubMed  CAS  Google Scholar 

  43. Degnan J.H., Rosenberg N.A. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340.

    Article  PubMed  Google Scholar 

  44. Hickerson M.J., Carstens B.C., Cavender-Bares J., Crandall K.A., Graham C.H., Johnson J.B., Rissler L., Victoriano P.F., Yoder A.D. 2010. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phyl. Evol. 54, 291–301

    Article  CAS  Google Scholar 

  45. Pollard D.A., Iyer V.N., Moses A.M., Eisen M.B. 2006. Widespread discordance of gene trees with species tree in Drosophila: Evidence for incomplete lineage sorting. PLoS Genet. 2, e173.

    Article  PubMed  CAS  Google Scholar 

  46. MacGuire J.A., Linkem C.W., Koo M.S., Hutchinson D.W., Lappin A.K., Orange D.I., Lemos-Espinal J., Riddle B.R., Jaeger J.R. 2007. Mitochondrial introgression and incomplete lineage sorting through space and time: Phylogenetics of crotaphytid lizards. Evolution. 61, 2879–2897.

    Article  CAS  Google Scholar 

  47. Knowless L.L., Carstens B.C. 2007. Delimiting species without monophyletic gene trees. Syst. Biol. 56, 887–895.

    Article  Google Scholar 

  48. Leache A.D., Koo M.S., Spencer C.L., Papenfuss T.J., Fischer R.N. 2009. Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma). Proc. Natl. Acad. Sci. U. S. A. 106, 12418–12423.

    Article  PubMed  CAS  Google Scholar 

  49. Benavides E., Baum R., McClellan D., Sites J.W., jr. 2007. Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): Aligning and retrieving indel signals from nuclear introns. Syst. Biol. 56, 776–797.

    Article  PubMed  CAS  Google Scholar 

  50. Kmiec B., Woloszynska M., Janska H. 2006. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr. Genet. 50, 149–159.

    Article  PubMed  CAS  Google Scholar 

  51. Grechko V.V. 2011. Repeated DNA sequences as an engine of biological diversification. Mol. Biol. (Moscow) 45, 704–727.

    Article  CAS  Google Scholar 

  52. Leache A.D., McGuire J.A. 2006. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phyl. Evol. 39, 628–644.

    Article  CAS  Google Scholar 

  53. Leache A.D., Reeder T.W. 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulates): A comparison of parsimony, likelihood, and Bayesian approaches. Syst. Biol. 51, 44–68.

    Article  PubMed  Google Scholar 

  54. Douglas D.A., Arnason U. 2009. Examining the utility of categorical models and alleviating artifacts in phylogenetic reconstruction of the Squamata (Reptilia). Mol. Phyl. Evol. 52, 784–796.

    Article  CAS  Google Scholar 

  55. Lindell J., Mendez-de la Cruz. F.R., Murphy R.W. 2005. Deep genealogical history without population differentiation: Discordance between mtDNA and allozyme divergence in the zebra-tailed lizard (Gallisaurus draconoides). Mol. Phyl. Evol. 36, 682–694.

    Article  CAS  Google Scholar 

  56. Rowlings L.H., Rabosky D.L., Donnellan S.C., Hutchinson M.N. 2008. Python phylogenetics: Inference from morphology and mitochondrial DNA. Biol. J. Linn. Soc. 93, 603–619.

    Article  Google Scholar 

  57. Honda M., Ota H., Murphy R.W., Hikida T. 2006. Phylogeny and biogeography of water skinks of the genus Tropidophorus (Reptilia: Scincidae): A molecular approach. Zool. Scripta. 35, 85–95.

    Article  Google Scholar 

  58. Yang Z., Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. U. S. A. 107, 9264–9269.

    Article  PubMed  CAS  Google Scholar 

  59. Russo C.A.M., Takezaki N., Nei M. 1996. Efficiency of different genes and the different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol. Evol. 13, 525–536.

    Article  PubMed  CAS  Google Scholar 

  60. Giribet G., Wheeler W.C. 1999. On gaps. Mol. Phyl. Evol. 13, 132–143.

    Article  CAS  Google Scholar 

  61. Simmons M.P., Ochoterena H. 2000. Gaps as character in sequence-based phylogenetic analysis. Syst. Biol. 49, 369–381.

    Article  PubMed  CAS  Google Scholar 

  62. Miclosh I., Lunter G.A., Holmes I. 2004. A “long indel” model for evolutionary sequence alignment. Mol. Biol. Evol. 21, 529–540.

    Google Scholar 

  63. Ashton K.G., De Queiroz A. 2001. Molecular systematics of the western rattlesnake, Crotalus viridis (Viperidae), with comments on the utility of the Dloop in the phylogenetic studies of snakes. Mol. Phyl. Evol. 21, 176–189.

    Article  CAS  Google Scholar 

  64. Gatesy J., Baker R.H. 2005. Hidden likelihood support in genomics data: Can forty-five wrongs make a right? Syst Biol. 54, 483–492.

    Article  PubMed  Google Scholar 

  65. Gadagkar S.R., Rosenberg M.S., Kumar S. 2005. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 64–74.

    Article  CAS  Google Scholar 

  66. Kubatko L.S., Degnan J.H. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56, 17–24.

    Article  PubMed  CAS  Google Scholar 

  67. Liu L., Pearl D.K., Brumfield R.T., Edwards S.V. 2008. Estimating species trees ueing multiple-allele DNA sequence data. Evolution. 62, 2080–2091.

    Article  PubMed  Google Scholar 

  68. Maddison W.P., Knowless L.L. 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30.

    Article  PubMed  Google Scholar 

  69. Keogh I.S., Edwards D.L., Fisher R.N., Harlow P.S. 2008. Molecular and morphological analysis of the critically endangered Fijian iguanas reveals cryptic diversity and a complex biogeographic history. Phil. Trans. R. Soc. B. doi:10.1098/rstb.2008.0120

    Google Scholar 

  70. Wiens J.J., Hollingsworth B.D. 2000. War of the iguanas: Conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst. Biol. 49, 143–159.

    Article  PubMed  CAS  Google Scholar 

  71. Oliviero M., Bolgna M.A., Mariottini P. 2000. Molecular biogeography of the Mediterranean lizards Podarcis Wagler, 1830, and Teira Gray, 1838 (Reptilia, Lacertidae). J. Biogeogr. 27, 1403–1420.

    Article  Google Scholar 

  72. Slowinsky J.B. 2001. Molecular polytomies. Mol. Phyl. Evol. 18, 114–120.

    Article  Google Scholar 

  73. Suzuki Y., Glazko G.V., Nei M. 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. U. S. A. 99, 16138–16143.

    Article  PubMed  CAS  Google Scholar 

  74. Townsend T., Larson A. 2002. Molecular phylogenetics and mitochondrial genomic evolution in the Chamaeleonidae (Reptilia, Squamata). Mol. Phyl. Evol. 23, 22–36.

    Article  CAS  Google Scholar 

  75. Jennings W.B., Pianka E.R., Donnellan S. 2003. Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biota. Syst. Biol. 52, 757–780.

    PubMed  Google Scholar 

  76. Kolaczkowski B., Thornton J.W. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature. 431, 980–984.

    Article  PubMed  CAS  Google Scholar 

  77. Castoe T.A., Parkinson C.L. 2006. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol. Phyl. Evol. 39, 91–110.

    Article  Google Scholar 

  78. Melvill J., Ritchie E.G., Chapple S.N.J., Glor R.E., Schulte J.A. II. 2011. Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas. Mol. Phyl. Evol. 58, 257–270.

    Article  Google Scholar 

  79. Petit R.J., Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386–395.

    Article  PubMed  Google Scholar 

  80. Zamudio K.R., Jones K.B., Ward R.H. 1997. Molecular systematics of short-horned lizards: Biogeography and taxonomy of a widespread species complex. Syst. Biol. 46, 284–305.

    Article  PubMed  CAS  Google Scholar 

  81. Pang J., Wang Y., Zhong Y., Hoelzerl A.R., Papenfuss T.J., Zeng X., Ananjeva N.B., Zhang Y. 2003. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phyl. Evol. 27, 398–409.

    Article  CAS  Google Scholar 

  82. Melvill J., Hale J., Mantziou G., Ananjeva N.B., Milto K. 2009. Historical biogeography, phylogenetic relationships and intraspecific diversity of agamid lizards in the Central Asian deserts of Kazakhstan and Uzbekistan. Mol. Phyl. Evol. 53, 99–112.

    Article  CAS  Google Scholar 

  83. Castoe T.A, De Koning A.P.J, Kim H.-M., Gu W., Noonan B.P., Naylor G., Jiang Z.J., Parkinson C.L., Pollock D.D. 2009. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 106, 8986–8991.

    Article  PubMed  CAS  Google Scholar 

  84. Templeton A.R. 2009. Why does a method that fails continue to be used? The answer. Evolution. 63, 807–812.

    Article  PubMed  Google Scholar 

  85. Templeton A.R. 2010. Coalescent-based, maximum likelihood inference in phylogeography. Mol. Ecol. 19, 431–435.

    Article  PubMed  CAS  Google Scholar 

  86. Knowless L.L. 2008. Why does a method that fails continue to be used? Evolution. 62, 2713–2717.

    Article  Google Scholar 

  87. Beaumont M.A., Nielsen R., Robert C., et al. 2010. In defence of model-based inference in phylogeography. Mol. Ecol. 19, 436–446.

    Article  CAS  Google Scholar 

  88. Paulo O.S., Jordan W.C., Bruford M.W., Nichols R.A. 2002. Using nested clade analysis to assess the history of colonization and the persistence of populations of the Iberian lizard. Mol. Ecol. 11, 809–819.

    Article  PubMed  CAS  Google Scholar 

  89. Morando M., Avila L.J., Sites J.W., jr. 2003. Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongates-kriegi complex (Squamata: Liolaemidae) in Andean-Patagonian South America. Syst. Biol. 52, 159–185.

    Article  PubMed  Google Scholar 

  90. Gifford M.E., Larson A. 2008. In situ genetic difference in Ameiva chrysolaemus: Multilocus perspective. Mol. Phyl. Evol. 49, 277–291

    Article  CAS  Google Scholar 

  91. O’Meara B.C. 2010. New heuristic methods for joint species delimitation and species tree inference. Syst. Biol. 59, 59–73.

    Article  PubMed  Google Scholar 

  92. Chapple D.G., Keogh J.S., Hutchinson M.N. 2004. Molecular phylogeography and systematics of the arid-zone members of the Egernia whitii (Lacertilia: Scincidae) species group. Mol. Phyl. Evol. 33, 549–561.

    Article  CAS  Google Scholar 

  93. Giribet G., DeSalle R., Wheeler W.C. 2002. “Pluralism” and the aims of phylogenetic research. In: Molecular Systematics and Evolution. Basel: Birkhauser Verlag, p. 141.

    Google Scholar 

  94. Eckert A.J., Carstens B.C. 2008. Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. Mol. Phyl. Evol. 49, 832–842.

    Article  CAS  Google Scholar 

  95. Heled J., Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580.

    Article  PubMed  CAS  Google Scholar 

  96. Delsuc F., Brinkmann H., Philippe H. 2005. Phylogenomics and the reconstruction of the Tree of Life. Nature Rev. Genet. 6, 361–375.

    Article  PubMed  CAS  Google Scholar 

  97. Alifanov V.R. 2007. Lizards in the dinosaurus era. Priroda (Moscow) 9, 47–58.

    Google Scholar 

  98. Janes D. E., Organ C.L., Fujita M.K., Shedlock A.M., Edwards S.V. 2010. Genome evolution in Reptilia, the sister group of Mammals. Annu. Rev. Genom. Hum. Genet. 11, 239–264.

    Article  CAS  Google Scholar 

  99. Hedges S.B., Vidal N. 2009. Lizards, snakes, and amphisbaenians (Squamata). In: The Timetree of Life. Eds. Hedges S.B., Kumar S. Oxford: Oxford Univ. Press, pp. 383–389.

    Google Scholar 

  100. Sites J.W., Davis S.K., Guerra T., Iverson J.B., Snell H.L. 1996. Character congruence and phylogenetic signal in molecular and morphological data sets: A case study in the living iguanas (Squamata, Iguanidae). Mol. Biol Evol. 13, 1087–1105.

    Article  PubMed  CAS  Google Scholar 

  101. Macey J.R., Larson A., Ananjeva N.B., Papenfuss T.J. 1997. Evolutionary shifts in the three major structural features of the mitochondrial genome among iguanian. J. Mol. Biol. 44, 660–674.

    CAS  Google Scholar 

  102. Fuller S., Baverstock P., King D. 1998. Biogeographic origins of goannas (Varanidae): A molecular perspective. Mol. Phyl. Evol. 9, 294–307.

    Article  CAS  Google Scholar 

  103. Harris D.J. 1999. Molecular systematics and evolution of lacertid lizards. Nat. Croat. 8, 161–180.

    Google Scholar 

  104. Frost D.R., Rodrigues M.T., Grant T., Titus T.A. 2001. Phylogenetics of the lizards genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): Direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phyl. Evol. 21, 352–371.

    Article  CAS  Google Scholar 

  105. Bromham L., Woolfit M., Lee M.S.Y., Rambaut A. 2002. Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution. 56, 1921–1930.

    PubMed  Google Scholar 

  106. Schulte J.A. II, Valladares J.P., Larson A. 2003. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica. 56, 399–319.

    Article  Google Scholar 

  107. Whiting A.S., Bauer A.M., Sites J.W., jr. 2003. Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Mol. Phyl. Evol. 29, 582–598.

    Article  CAS  Google Scholar 

  108. Townsend T.M., Larson A., Louis E., Macey J.R. 2004. Molecular phylogenetics of Squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735–757.

    Article  PubMed  Google Scholar 

  109. Vidal N., Hedges S.B. 2009. The molecular evolution tree of lizards, snakes and amphysbaenians. C. R. Biologies. 332, 129–139.

    Article  PubMed  CAS  Google Scholar 

  110. Carranza S., Arnold E.N. 2006. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol. Phyl. Evol. 38, 531–545.

    Article  CAS  Google Scholar 

  111. Fry B.G., Vidal N., Norman J.A., Vonk F.J., Scheib H., Ramjan S.F.R., Kuruppu S., Fung K., Hedges S.B., Richardson M.K., Hodgson W.C., Ignjatovic V., Summerhayes R., Kochva E. 2006. Early evolution of the venom system in lizards and snakes. Nature. 439, 584–588.

    Article  PubMed  CAS  Google Scholar 

  112. Arnold E.N., Arribas O., Carranza S. 2007. Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with description of eight new genera. Zootaxa. 1430, 1–86.

    Google Scholar 

  113. Kumazawa Y. 2007. Mitochondrial genome from major lizard families suggest their phylogenetic relationships and ancient radiation. Gene. 388, 19–26.

    Article  PubMed  CAS  Google Scholar 

  114. Carretero M.A. 2008. An integrated assessment of a group with complex systematics: Iberomaghrebian lizard genus Podarcis (Squamata: Lacertidae). Integr. Zool. 4, 247–266.

    Article  Google Scholar 

  115. Kaply P., Limberakis P., Poulakakis N., Mantziou G., Parmakelis A., Mylonas M. 2008. Molecular phylogeny of three Mesalina (Reptilia: Lacertidae) species (M. gattulata, M. brevirostris, and M. bahaeldini) from the North Africa and the Middle East: Another case of paraphyly? Mol. Phyl. Evol. 49, 102–110.

    Article  CAS  Google Scholar 

  116. Conrad J.L. 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull. Am. Mus. Nat. Hist. 310, 1–182.

    Article  Google Scholar 

  117. Keogh J.S. 1998. Molecular phylogeny of elapid snakes and a consideration of their biogeographic history. Biol. J. Linn. Soc. 63, 177–203.

    Article  Google Scholar 

  118. Dong S., Kumazawa Y. 2005. Complete mitochondrial DNA sequences of six snakes: Phylogenetic relationships and molecular evolution of genomic features. J. Mol. Evol. 61, 12–22.

    Article  PubMed  CAS  Google Scholar 

  119. Lee M.S., Hugall A.F., Lawson R., Scanlon J.D. 2007. Phylogeny of snakes (Serpentes): Combining morphological and molecular data in likelihood, Bayesian and parsimony analyses. Syst. Biodivers. 5, 371–389.

    Article  Google Scholar 

  120. Voris H.K., Karns D.R., Feldheim K.A., Kechavarti B., Rinehart M. 2008. Multiple paternity in the Oriental-Australian rear-ranged watersnake (Homalopsidae). Herp. Cons. Biol. 3, 88–102.

    Google Scholar 

  121. Alfaro M.E., Karns D.R., Voris H.K., Brock C.D., Stuart B.L. 2008. Phylogeny, evolutionary history, and biogeograpny of Oriental-Australian rear-ranged water snakes (Colubroidea: Homalopsidae) inferred from mitochondrial and nuclear DNA sequences. Mol. Phyl. Evol. 46, 576–593.

    Article  Google Scholar 

  122. Rest J.S., Ast J.C., Austin C.C., Waddell P.J., Tibbetts E.A., Hay J.M., Mindell D.P. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phyl. Evol. 29, 289–297.

  123. Bryson R.W. Jr., Pastorini J., Burbrink F.T., Forstner M.R.J. 2007. A phylogeny of the Lampropeltis mexicana (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Mol. Phyl. Evol. 43, 674–684.

    Article  CAS  Google Scholar 

  124. Cox S.C., Carranza S., Brown R.P. 2010. Divergence times and colonization of the Canary Islands by Gallotia lizards. Mol. Phyl. Evol. 56, 747–757.

    Article  Google Scholar 

  125. Guicking D., Lawson R., Joger U., Wink M. 2006. Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biol. J. Linn. Soc. 87, 127–143.

    Article  Google Scholar 

  126. Nardi F., Carapelli A., Fanciully P.P., Dallai R., Frati F. 2001. The complet mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: Evidence for heteroplasmy and tRNA translocations. Mol. Biol. Evol. 18, 1923–1304.

    Article  Google Scholar 

  127. Lawson R., Slowinski J.B., Crother B.I., Burbink F.T. 2005. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Mol. Phyl. Evol. 37, 581–601.

    Article  CAS  Google Scholar 

  128. Torres-Carvajal O., Schulte J.A. II, Cadle J.E. 2006. Phylogenetic relationships of South American lizards of the genus Stenocercus (Squamata: Iguania): A new approach using a general mixture model for gene sequence data. Mol. Phyl. Evol. 39, 171–185.

    Article  CAS  Google Scholar 

  129. Moritz C. 1994. Defining “evolutionary significant units” for cobservation. Trends Ecol. Evol. 9, 373–375.

    Article  PubMed  CAS  Google Scholar 

  130. Honda M., Ota H., Sengoku S., Yong H.-S., Hikida T. 2002. Molecular evaluation of phylogenetic significances in the highly divergent karyotypes of the genus Gonocephalus (Reptilia: Agamidae) from tropical Asia. Zool. Sci. 19, 129–133.

    Article  PubMed  CAS  Google Scholar 

  131. Gillooly J.F., Allen A.P., West G.B., Brown J.H. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. U. S. A. 102, 140–145.

    Article  PubMed  CAS  Google Scholar 

  132. Rand D.M. 1994. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol. Evol. 9, 125–131.

    Article  PubMed  CAS  Google Scholar 

  133. Birky C.W., jr. 2001. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–148.

    Article  PubMed  CAS  Google Scholar 

  134. Nunn G.B., Stanley S.E. 1998. Body size effects and rates of cytochrome c evolution in tube-nosed seabirds. Mol. Biol. Evol. 15, 1360–1371.

    Article  PubMed  CAS  Google Scholar 

  135. Soudheimer N., Glatz C.E., Tirone J.E., Deardorf M.A., Krieger A.M., Hakonarson H. 2011. Neutral mitochondrial heteroplasmy and the influence of aging. Hum. Mol. Genet. 20, 1653–1659.

    Article  CAS  Google Scholar 

  136. Bromham L. 2002. Molecular clocks in reptiles: Life history influences the rate of molecular evolution. Mol. Biol. Evol. 19, 302–309.

    Article  PubMed  CAS  Google Scholar 

  137. Vitt L.J., Pianka E.R. 2004. Historical patterns in lizard ecology: What teiids can tell us about lacertids. In: The Biology of Lacertid Lizards. Evolutionary and Ecological Perspectives. Eds. Perrez-Melado V., Riera V., Perere A. Institut Menorqui d’Estudis, vol. 8, pp. 139–157.

    Google Scholar 

  138. Droge W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.

    PubMed  CAS  Google Scholar 

  139. Wallace D.C. 2010. Mitochondrial DNA mutations in desease and aging. Environ. Mol. Mutagen. 51, 440–450.

    PubMed  CAS  Google Scholar 

  140. Daniels S.R., Heideman N.J.L., Hendrics M.G.J., Mokone M.E., Crandall K.A. 2005. Unravelling evolutionary lineages in the limbless fossorial skinks genus Acontias (Sauria: Scincidae): Are subspecies equivalent systematic units? Mol. Phyl. Evol. 34, 645–654.

    Article  CAS  Google Scholar 

  141. Edwards D.L., Melvill J. 2011. Extensive phylogeographic and morphological diversity in Diporiphore nobbi (Agamidae) leads to a taxonomic review and a new species description. J. Herpetol. 45, 530–546.

    Article  Google Scholar 

  142. Cinnery P.F., Dahl H.H.M. 2000. The inheritance of mitochondrial DNA heteroplasmy: Random drift, selection, or both? Trends Genet. 16, 500–505.

    Article  Google Scholar 

  143. Zhao X., Li N., Guo W., Hu X., Liu Z., Gong G., Wang A., Feng J., Wu C. 2004. Further evidence for paternal inheritance of mtDNA in the sheep (Ovis aries). Heredity. 93, 399–403.

    Article  PubMed  CAS  Google Scholar 

  144. Schwartz M., Vissing J. 2002. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580.

    Article  PubMed  Google Scholar 

  145. Kraytsberg Y., Schwartz M., Brown T.A., Ebralidse K., Kunz W.S., Clayton D.A., Vissing J., Khrapko K. 2004. Recombination of human mitochondrial DNA. Science. 304, 981.

    Article  PubMed  CAS  Google Scholar 

  146. Laloi D., Richard M., Lecomte J., Massot L., Clobert J. 2004. Multiple paternity in clutches of common lizard Lacerta vivipara: Data from microsatellite markers. Mol. Ecol. 13, 719–723.

    Article  PubMed  CAS  Google Scholar 

  147. Grzybowski T., Malyarchuk B.A., Czarny J., Miscicka-Sliwka., Kotzbach R. 2003. High level of mitochondrial DNA heteroplasmy in single hair roots: Reanalysis and revision. Electrophoresis. 24, 1159–1165.

    Article  PubMed  CAS  Google Scholar 

  148. Wallis G.P. 1999. Do animal mitochondrial genomes recombine? Trends Ecol. Evol. 14, 209–210.

    Article  PubMed  Google Scholar 

  149. Gyllensten U.B., Wharton D., Joseffson A., Wilson A.C. 1991. Paternal inheritance of mitochondrial DNA in mice. Nature. 352, 255–257.

    Article  PubMed  CAS  Google Scholar 

  150. Hagelberg E. 2003. Recombination or mutational rates heterogeneity? Implications for mitochondrial Eve. Trends Genet. 19, 84–90.

    Article  PubMed  CAS  Google Scholar 

  151. Podnar M., Meyer W., Tvrtkovic N. 2005. Biogeography of the Italian wall lizard, Podarcis sicula, as revealed by mitochondrial DNA sequences. Mol. Ecol. 14, 575–588.

    Article  PubMed  CAS  Google Scholar 

  152. Townsend T.M., Larson A., Louis E., Macey J.R. 2004. Molecular phylogenetics of Squamata: The position of snakes, amphysbaenians, and dibamids, and the root of the Squamata. Syst. Biol. 53, 735–757.

    Article  PubMed  Google Scholar 

  153. Croucher P.J.P., Oxford G.S., Searle J.B. 2004. Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae). Biol. J. Linn. Soc. 81, 79–89.

    Article  Google Scholar 

  154. Densmore L.D., Wright J.W., Brown W.M. 1985. Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards (genus Cnemidophorus). Genetics. 110, 689–707.

    PubMed  CAS  Google Scholar 

  155. Fonseca M.M., Brito J.C., Paulo O.S., Carretero M.A., Harris D.J. 2009. Systematic and phylogeographic assessment of the Acanthodactilus erythrurus group (Reptilia: Lacertidae) based on phylogenetic analyses of mitochondrial and nuclear DNA. Mol. Phyl. Evol. 51, 131–142.

    Article  CAS  Google Scholar 

  156. Jenuth J.P., Peterson A.C., Shoubridge E.A. 1997. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nature Genet. 16, 93–95.

    Article  PubMed  CAS  Google Scholar 

  157. Ast J.C. 2001. Mitochondrial DNA evidence and evolution in Varanoidea (Squamata). Cladistics. 17, 211–226.

    Article  Google Scholar 

  158. Petri B., von Haeseler A., Paabo S. 1996. Extreme sequence heteroplasmy in bat mitochondrial DNA. Biol. Chem. 377, 661–667.

    PubMed  CAS  Google Scholar 

  159. Frey J.E., Frey B. 2004. Origin of intra-individual variation in PCR-amplified mitochondrial cytochrome oxidase I of Thrips tabaci (Thysanoptera: Thripidae): Mitochondrial heteroplasmy or nuclear integration? Hereditas. 140, 92–98.

    Article  PubMed  Google Scholar 

  160. Funk D.J., Omland K.E. 2003. Species-level paraphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397–423.

    Article  Google Scholar 

  161. Reiner J.E., Kishare R.B., Levin B.C., Albanetti T., Boire N., Knipe A., Helmerson K., Deckman K.H. 2010. Detection of heteroplasmic mitochondrial DNA in single mitochondria. PLoS ONE. 5, e14359.

    Article  PubMed  CAS  Google Scholar 

  162. Nachman M.W., Brown W.M., Stoneking M., Aquadro C.F. 1996. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 142, 953–963.

    PubMed  CAS  Google Scholar 

  163. Jackman T.R., Irschnic D.J., De Quairroz K., Losos J.B., Larson A. 2002. Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. J. Exp. Zool. (Mol. Biol. Dev. Evol.). 294B, 1–16.

    Article  Google Scholar 

  164. Thorpe R.S., Leadbeater D.L., Pook C.E. 2005. Molecular clock and geological dates: Cytochrome b of Anolis extremus substantially contradicts dating of Barnados emergence. Mol. Ecol. 14, 2087–2096.

    Article  PubMed  CAS  Google Scholar 

  165. Pereira S.L., Baker A.J. 2006. A multigenomic timescale for birds defects variable phylogenetic rates of molecular evolution and refute the standart molecular clock. Mol. Biol. Evol. 23, 1731–1740.

    Article  PubMed  CAS  Google Scholar 

  166. Smith S.A., Sadler R.A., Bauer A.M., Austin C.C., Jackman T. 2007. Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: Evidence for a single origin of the endemic skinks of Tasmania. Mol. Phyl. Evol. 43, 1151–1166.

    Article  CAS  Google Scholar 

  167. Weinreich D.M., Rand D.M. 2000. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics. 156, 385–399.

    PubMed  CAS  Google Scholar 

  168. Bazin E., Glemin S., Galtier N. 2006. Population size does not influence mitochondrial genetic diversity in animals. Science. 312, 570–572.

    Article  PubMed  CAS  Google Scholar 

  169. Hudson R.R., Torelli M. 2003. Stochasticity overrules the “three-times rule”: Genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution. 57, 182–190.

    PubMed  Google Scholar 

  170. Irwin D.M., Kocher T.D., Wilson A.C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144.

    Article  PubMed  CAS  Google Scholar 

  171. Lopez P., Casane D., Philippe H. 2002. Heterotachy, an important process of protein evolution. Mol. Biol. Evol. 19, 1–7.

    Article  PubMed  CAS  Google Scholar 

  172. Jiang Z.J., Castoe T.A., Austin C.C., Burbrink F.T., Herron M.D., McGuire J.A., Parkinson C.L., Pollock D.D. 2007. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicated control region. BMC Evol. Biol. 7, 123–137.

    Article  PubMed  CAS  Google Scholar 

  173. Kumazawa Y. 2004. Mitochondrial DNA sequences of five squamates: Phylogenetic affiliation of snakes. DNA Res. 11, 137–144.

    Article  PubMed  CAS  Google Scholar 

  174. Hebert P.D.N., Cywinska A., Ball S.L., De Waard J.R. 2003. Bilogical identifications through DNA barcodes. Proc. R. Soc. London. 270, 313–321.

    Article  CAS  Google Scholar 

  175. Norman J.E., Gray M.W. 2001. A complex organization of the gene encoding cytochrome oxidase subunit 1 in the mitochondrial genome of the dinoflagellate, Crypthecodinium cohnii: Homologous recombination generates two different cox1 open reading frames. J. Mol. Evol. 53, 351–363.

    Article  PubMed  CAS  Google Scholar 

  176. Rubinoff D., Cameron S., Will K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J. Hered. 97, 581–594.

    Article  PubMed  CAS  Google Scholar 

  177. Harris D.J., Sa-Sousa P. 2001. Species distinction and relationships of the western Iberian Podarcis lizards (Reptilian, Lacertidae) based on morphology and mitochondrial DNA sequences. Herpetol. J. 11, 129–136.

    Google Scholar 

  178. Meyer A. 1994. Shortcomings of the cytochrome b gene as molecular marker. Trends Ecol. Evol. 9, 278–280.

    Article  PubMed  CAS  Google Scholar 

  179. Kocher T.D., Thomas W.K., Meyer A., Edwards S.V., Paabo S., Villablanca F.X., Wilson A.C. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S. A. 86, 6196–6200.

    Article  PubMed  CAS  Google Scholar 

  180. Castoe T., De Koning A.P., Kim H.-M., Gu W., Noonan B.P., Naylor G., Jiang Z.J., Parkinson C.L., Pollock D.D. 2009. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 106, 8986–8991.

    Article  PubMed  CAS  Google Scholar 

  181. Albert E.M., San Mauro D., Garcia-Paris M., Ruber L., Zardoya R. 2009. Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data. Gene. 441, 12–21.

    Article  PubMed  CAS  Google Scholar 

  182. Baker R.J., Bradly R.D. 2006. Speciation in mammals and the genetic species concept. J. Mammal. 87, 643–662.

    Article  PubMed  Google Scholar 

  183. Chen Q.-L., Tang X.-S., Yao W.-J., Lu S.-Q. 2009. Bioinformatics analysis the complete sequences of cytochrome b of Takydromus sylvaticus and modeling the tertiary structure of encoded protein. Int. J. Biol. Sci. 5, 596–602.

    Article  PubMed  CAS  Google Scholar 

  184. Rokas A., Ladoukakis E., Zouros E. 2003. Animal mitochondrial DNA recombination revisited. Trends Ecol. Evol. 18, 411–417.

    Article  Google Scholar 

  185. Shierup M.H., Hein J. 2000. Consequences of recombination on traditional phylogenetic analysis. Genetics. 156, 879–891.

    Google Scholar 

  186. Posada D., Crandal K.A. 2002. The effect of recombination on the accuracy of phylogenetic estimation. J. Mol. Evol. 54, 396–402.

    PubMed  CAS  Google Scholar 

  187. Piganeau G., Gardner M., Eyre-Walker A. 2004. A broad survey of recombination in animal mitochondria. Mol. Biol. Evol. 21, 2319–2325.

    Article  PubMed  CAS  Google Scholar 

  188. Macey J.R., Schulte J.A., Ananjeva N.B., Larson A., Rastegar-Pouyani N., Shammakov S.M., Pappenfus T.J. 1998. Phylogenetic relationships among agamid lizards of Laudakia caucasica species group: Testing hypothesis of biogeographical fragmentation and an area cladogram for the Iranian plateau. Mol. Phyl. Evol. 10, 118–131.

    Article  CAS  Google Scholar 

  189. Hoarau G., Holla S., Lescasse R., Stam W.T., Olsen J.L. 2002. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Plathichtys felesus. Mol. Biol. Evol. 19, 2261–2264.

    Article  PubMed  CAS  Google Scholar 

  190. Shao R., Mitani H., Barker S.C., Takahasi M., Fukunaga M. 2005. Novel mt gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J. Mol. Evol. 60, 764–773.

    Article  PubMed  CAS  Google Scholar 

  191. Okajima Y., Kumazawa Y. 2010. Mitochondrial genomes of acrodont lizards: Timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol. Biol. 10, 141–156.

    Article  PubMed  Google Scholar 

  192. Amer S.A.M., Kumazawa Y. 2005. Mitochondrial genome of Pogona vitticeps (Reptilia: Agamidae): Control region duplication and the origin of Australian agamids. Gene. 346, 249–256.

    Article  PubMed  CAS  Google Scholar 

  193. Amer S.A.M., Kumazawa Y. 2008. Timing of a mtDNA gene rearrangement and interconcontinental dispersal of varanid lizards. Gene Genet. Syst. 83, 275–280.

    Article  CAS  Google Scholar 

  194. Sammler S., Bleidorn C., Tiedemann R. 2011. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mtDNA recombination. BMC Genomics. 12, 35.

    Article  PubMed  CAS  Google Scholar 

  195. Chan K.M.A., Levin S.A. 2005. Leaky prezygotic isolation and porous genomes: Rapid introgression of maternally inherited DNA. Evolution. 59, 720–729.

    PubMed  CAS  Google Scholar 

  196. Bensasson D., Zhang D.-X., Hartl D.L., Hewitt G.M. 2001. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 16, 314–322.

    Article  PubMed  Google Scholar 

  197. Hazkani-Covo E., Zeller R.M., Martin W. 2010. Molecular poltersgeites: Mitochondrial DNA copies (numts) in sequenced nuclear genome. PLOS Genet. 6, e10000834.

    Article  CAS  Google Scholar 

  198. Gaziev A.I., Shaikaev G.O. 2010. Nuclear mitochondrial pseudogenes. Mol. Biol. (Moscow). 44, 358–368.

    Article  CAS  Google Scholar 

  199. Sunnick P., Hales D.F. 1996. Numerous transposed sequences of mitochondrial cytochrom oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphydae). Mol. Biol. Evol. 13, 510–524.

    Article  Google Scholar 

  200. Woischnic M., Moraes C.T. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 12, 885–893.

    Google Scholar 

  201. Lopez P., Yuhki N., Masuda R., Modi W., O’Brien S.J. 1994. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 39, 174–190.

    PubMed  CAS  Google Scholar 

  202. Zhang D.-X., Hewitt G.M. 1996. Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol Evol. 11, 247–251.

    Article  PubMed  CAS  Google Scholar 

  203. Greenwood A., Paabo S. 1999. Nuclear insertion sequences of mtDNA predominant in haire but not in blood of elephants. Mol. Ecol. 8, 133–137.

    Article  PubMed  CAS  Google Scholar 

  204. Mishmar D., Ruiz-Pesini E., Brandon M., Wallace D.C. 2004. Mitochondrial DNA-like sequences in the nucleus (Numt): Insights into our African origins and the mechanism of foregn DNA integration. Hum. Mutat. 23, 125–133.

    Article  PubMed  CAS  Google Scholar 

  205. Triant D.A., DeWoody J.A. 2007. The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics amd phylogeography. J. Mammal. 88, 908–920.

    Article  Google Scholar 

  206. Dorner M., Altmann M., Paabo S., Morl M. 2001. Evidence for import of lysyl-tRNA into marsupial mitochondria. Mol. Biol. Cell. 12, 2688–2698.

    PubMed  CAS  Google Scholar 

  207. Funes S., Davidson E., Claros M.G., van List R., Perez-Martinez X., Varquez-Acevedo M., King M.P., Gonzalez-Halphen D. 2002. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0ATPase is encoded by a nuclear gene in Chlamidomonas reinhardtii. J. Biol. Chem. 277, 6051–6058.

    Article  PubMed  CAS  Google Scholar 

  208. Miraldo A., Hewitt G.M., Dear P.H., Paulo D.S., Emerson B.C. 2012. Numts help us to reconstruct the demographic history of the ocellated lizard (Lacreta lepida) in a secondary contact zone. Mol. Ecol. 21, 1005–1018.

    Article  PubMed  CAS  Google Scholar 

  209. Podnar M., Haring E., Pinsker W., Mayer W. 2007. Unusual origin of a nuclear pseudogene in the Iberian wall lizard: Intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). J. Mol. Evol. 64, 308–320.

    Article  PubMed  CAS  Google Scholar 

  210. Kizirian D., Trager A., Donnelly M.A., Wright J.W. 2004. Evolution of Galapagos Island lava lizards (Iguania: Tropiduridae: Microlophus). Mol. Phyl. Evol. 32, 761–769.

    Article  CAS  Google Scholar 

  211. Jesus J., Harris D.J., Brehm A. 2005. Phylogeography of Mabuya maculilabris (Reptilia) from Sao Tome Island (Gulf of Guinea) inferred from mtDNA sequences. Mol. Phyl. Evol. 37, 503–510.

    Article  CAS  Google Scholar 

  212. Steinfartz S., Glaberman S., Lanterbecq D., Russello M.A., Rosa S., Hanley T C., Marquez C., Snell H.L., Snell H.M., Gentile G., Dell’Olmo G., Powell A.M., Caccone A. 2009. Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evol. Biol. 9, 297–315.

    Article  PubMed  CAS  Google Scholar 

  213. Poulakakis N., Lymberakis P., Valakos E., Zouros E., Mylonas M. 2005. Phylogenetic relationships and biogeography of Podarcis species from the Balkan Peninsula, by Bayesian and maximum likelihood analyses of mitochondrial DNA sequences. Mol. Phyl. Evol. 37, 845–857.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grechko.

Additional information

Original Russian Text © V.V. Grechko, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 1, pp. 61-82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grechko, V.V. The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers. Mol Biol 47, 55–74 (2013). https://doi.org/10.1134/S0026893313010056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313010056

Keywords

Navigation