Skip to main content
Log in

Homology-dependent inactivation of LTR retrotransposons in Aspergillus fumigatus and A. nidulans genomes

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The repeat-induced point mutation mechanism (RIP) is the most intriguing among the known mechanisms of homology-dependent gene inactivation (silencing) because of its ability to produce irreversible mutations in repetitive DNA sequences. Discovered for the first time in Neurospora crassa, RIP is characterized by C:G to T:A transitions in duplicated sequences. The mechanisms and range of occurrence of RIP are still poorly understood. Mobile elements, including retrotransposons, are a common target for the processes that lead to homology-dependent silencing because of their ability to propagate themselves. Comparative analysis of LTR retrotransposons was performed throughout the genomes of two ascomycetes, Aspergillus fumigatus and A. nidulans. “De-RIP” retroelements were reconstructed on the basis of several copies. CpG, CpA, and TpG sites, which are potential targets for mutagenesis, were found at a much lower frequency in mobile elements than in structural genes. The dinucleotide targets of the two species are affected by RIP at different frequencies: mutagenesis occurs at both CpG and CpA sites in A. fumigatus and is confined to CpG dinucleotides in A. nidulans. This work provides a theoretical background for planning the experimental investigation of RIP inactivation in aspergilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird A.P. 1986. CpG-rich islands and the function of DNA methylation. Nature. 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  2. Gowher H., Leismann O., Jeltsch A. 2000. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 19, 6918–6923.

    Article  PubMed  CAS  Google Scholar 

  3. Vanyushin B.F. 2006. DNA methylation in plants. Curr. Top. Microbiol. Immunol. 301, 67–122.

    PubMed  CAS  Google Scholar 

  4. Doerfler W. 1983. DNA methylation and gene activity. Annu. Rev. Biochem. 52, 93–124.

    Article  PubMed  CAS  Google Scholar 

  5. Norris D.P., Patel D., Kay G.F., Penny G.D., Brockdorff N., Sheardown S.A., Rastan S. 1994. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell. 77, 41–51.

    Article  PubMed  CAS  Google Scholar 

  6. Lloyd V. 2000. Parental imprinting in Drosophila. Genetica. 109, 35–44.

    Article  PubMed  CAS  Google Scholar 

  7. Busslinger M., Hurst J., Flavell R.A. 1983. DNA methylation and the regulation of globin gene expression. Cell. 34, 197–206.

    Article  PubMed  CAS  Google Scholar 

  8. Li E., Bestor T.H., Jaenisch R. 1992. Targed mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  9. Baylin S.B., Herman J.G., Graff J.R., Vertino P.M., Issa J.-P. 1998. Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.

    Article  PubMed  CAS  Google Scholar 

  10. Bird A.P. 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  11. Kricker M.C., Drake J.W., Radman M. 1992. Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc. Natl. Acad. Sci. USA. 89, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  12. Duncan B.K., Miller J.H. 1980. Mutagenic deamination of cytosine residues in DNA. Nature. 287, 560–561.

    Article  PubMed  CAS  Google Scholar 

  13. Matzke M.A., Matzke A.J. 1998. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defense responses. Cell. Mol. Life Sci. 54, 94–103.

    Article  PubMed  CAS  Google Scholar 

  14. Meyer P., Heidmann I. 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: An indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243, 390–399.

    PubMed  CAS  Google Scholar 

  15. Galagan J.E., Selker E.U. 2004. RIP: The evolutionary cost of genome defense. Trends Genet. 20, 417–423.

    Article  PubMed  CAS  Google Scholar 

  16. Faugeron G. 2000. Diversity of homology-dependent gene silencing strategies in fungi. Curr. Opin. Microbiol. 3, 144–148.

    Article  PubMed  CAS  Google Scholar 

  17. Selker E.U. 1999. Epigenetic phenomena in filamentous fungi: Useful paradigms or repeated-induced confusion. Trends Genet. 13, 296–301.

    Article  Google Scholar 

  18. Colot V., Rossingol J.-L. 1999. Eukaryotic DNA methylation as an evolutionary device. BioEssays. 21, 402–411.

    Article  PubMed  CAS  Google Scholar 

  19. Kidwell M.G., Lisch D.R. 2001. Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution. 55, 1–24.

    PubMed  CAS  Google Scholar 

  20. Kidwell M.G. 2002. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 115, 49–63.

    Article  PubMed  CAS  Google Scholar 

  21. Hua-Van A., Le Rouzic A., Maisonhaute C., Capy P. 2005. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet. Genome Res. 110, 426–440.

    Article  PubMed  CAS  Google Scholar 

  22. Novikova O., Fet B., Blinov A. 2007. LOR retrotransposons in the Aspergillus fumigatus and A. nidulans genomes. Mol. Biol. 41, 756–763.

    Article  CAS  Google Scholar 

  23. Neuveglise C., Sarfati J., Latge J.-P., Paris S. 1996. Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res. 24, 1428–1434.

    Article  PubMed  CAS  Google Scholar 

  24. Paris S., Latge J.P. 2001. Afut2, a new family of degenerate gypsy-like retrotransposon from Aspergillus fumigatus. Med. Mycol. 39, 195–198.

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen M.L., Hermansen T.D., Aleksenko A. 2001. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons. Mol. Genet. Genomics. 265, 883–887.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  27. Kricker M.C., Drake J.W., Radman M. 1992. Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc. Natl. Acad. Sci. USA. 89, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  28. Cambareri E.B., Aisner R., Carbon J. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: Degenerate transposons and simple repeats. Mol. Cell. Biol. 18, 5465–5477.

    PubMed  CAS  Google Scholar 

  29. Daboussi M.J., Daviere J.M., Graziani S., Langin T. 2002. Evolution of the Fot1 transposons in the genus Fusarium: Discontinuous distribution and epigenetic inactivation. Mol. Biol. Evol. 19, 510–520.

    PubMed  CAS  Google Scholar 

  30. Aleksenko A., Gems D., Clutterbuck J. 1996. Multiple copies of MATE elements support autonomous plasmid replication in Aspergillus nidulans. Mol. Microbiol. 20, 427–434.

    Article  PubMed  CAS  Google Scholar 

  31. Geiser D.M., Timberlake W.E., Arnold M.L. 1996. Loss of meiosis in Aspergillus. Mol. Biol. Evol. 13, 809–817.

    PubMed  CAS  Google Scholar 

  32. Poggeler S. 2002. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet. 42, 153–160.

    Article  PubMed  CAS  Google Scholar 

  33. Varga J. 2003. Mating type gene homologues in Aspergillus fumigatus. Microbiology. 149, 816–819.

    Article  PubMed  CAS  Google Scholar 

  34. Paoletti M., Rydholm C., Schwier E.U., Anderson M.J., Szakacs G., Lutzoni F., Debeaupuis J.P., Latge J.P., Denning D.W., Dyer P.S. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol. 15, 1242–1248.

    Article  PubMed  CAS  Google Scholar 

  35. Gow N.A., Brown A.J., Odds F.C. 2000. Candida’ arranged marriage. Science. 289, 256–257.

    Article  PubMed  CAS  Google Scholar 

  36. Tamame M., Antequera F., Villanueva J.R., Santos T. 1983. High-frequency conversion to a “fluffy” developmental phenotype in Aspergillus spp. by 5-azacytidine treatment: Evidence for involvement of a single nuclear gene. Mol. Cell. Biol. 3, 2287–2297

    PubMed  CAS  Google Scholar 

  37. Gowher H., Ehrlich K.C., Jeltsch A. 2001. DNA from Aspergillus flavus contains 5-methylcytosine. FEMS Microbiol. Lett. 205, 151–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Novikova.

Additional information

Original Russian Text © O.S. Novikova, V. Fet, A.G. Blinov, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 6, pp. 973–981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikova, O.S., Fet, V. & Blinov, A.G. Homology-dependent inactivation of LTR retrotransposons in Aspergillus fumigatus and A. nidulans genomes. Mol Biol 41, 886–893 (2007). https://doi.org/10.1134/S0026893307060039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307060039

Key words

Navigation