Skip to main content
Log in

Small heat shock proteins and adaptation of various Drosophila species to hyperthermia

  • Molecular Mechanisms of Biological Processes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The dynamics and the level of accumulation of small heat shock proteins (sHSP group 21–27) after a heat exposure were studied in three Drosophila species differing in thermotolerance. The southern species Drosophila virilis, having the highest thermotolerance, surpassed thermosensitive D. lummei and D. melanogaster in the level of sHSPs throughout the temperature range tested. The results suggest an important role of sHSPs in the molecular mechanisms of adaptation to adverse environmental conditions, particularly to hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunt C., Morimoto R.I. 1985. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc. Natl. Acad. Sci. USA. 82, 6455–6459.

    PubMed  CAS  Google Scholar 

  2. Margulis B.A., Guzhova I.V. 2000. Stress proteins in eukaryotic cells. Tsitologiya. 42, 323–342.

    CAS  Google Scholar 

  3. Ul’masov Kh.A., Karryeva B.Ch., Karaev K. 1993. Stressovye belki i adaptatsiya (Stress Proteins and Adaptation). Ashkhabad: Ylym.

    Google Scholar 

  4. Haslbeck M., Walke S., Stormer T., Ernsperger M., White H.E., Chen S., Saibil H.R., Buchner J. 1999. HSP27: A temperature-regulated chaperone. EMBO J. 18, 6744–6751.

    Article  PubMed  CAS  Google Scholar 

  5. Kelley W.L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23, 222–227.

    Article  PubMed  CAS  Google Scholar 

  6. Krebs R.A. 1999. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Cell Stress Chaperones. 4, 243–249.

    Article  PubMed  CAS  Google Scholar 

  7. Zatsepina O.G., Velikodvorskaia V.V., Molodtsov V.B., Garbuz D.G., Lerman D.N., Bettencourt B.R., Feder M.E., Evgenev M.B. 2001. A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J. Exp. Biol. 204, 1869–1881.

    PubMed  CAS  Google Scholar 

  8. Garbuz D.G., Moloftsov V.B., Velikodvorskaia V.V., Zatsepina O.G., Evgenev M.B. 2002. Evolution of response to heat shock within the genus Drosophila. Genetika. 38, 1097–1109.

    PubMed  CAS  Google Scholar 

  9. Garbuz D.G., Zatsepina O.G., Feder M.E., Evgen’ev M.B. 2003. Evolution of termotolerance and the heat-shock response: evidence from inter/intraspecific comparison and interspecific hybridization in the Drosophila virilis species group: 1. Thermal phenotype. J. Exp. Biol. 206, 2399–2408.

    Article  PubMed  CAS  Google Scholar 

  10. Mosser D.D., Caron A.W., Bourged L., Denis-Larose C., Massie B. 1997. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17, 5317–5327.

    PubMed  CAS  Google Scholar 

  11. Evgenev M.B., Zatsepina O.G., Garbuz D.G., Lerman D.N., Velikodvorskaia V.V., Zelentsova E.S., Feder M.E. 2004. Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma. 113, 223–232.

    CAS  Google Scholar 

  12. Chen Q., Ma E., Behar K.L., Xu T., Haddad G.G. 2002. Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. J. Biol. Chem. 277, 3274–3279.

    PubMed  CAS  Google Scholar 

  13. Ayme A., Tissieres A. 1985. Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J. 4, 2949–2954.

    PubMed  CAS  Google Scholar 

  14. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  15. O’Farrell P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed  CAS  Google Scholar 

  16. Krebs R.A., Feder M.E. 1997. Deleterious consequences of HSP70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones. 2, 60–71.

    Article  PubMed  CAS  Google Scholar 

  17. Feder M.E., Hofmann G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.

    Article  PubMed  CAS  Google Scholar 

  18. Evgenev M.B., Sheinker V.Sh., Levin A.V. 1987. Molecular mechanisms of adaptation to hyperthermia in higher organisms: 1. Heat shock protein synthesis in cultured cells and larvae of different silkworm species. Mol. Biol. 21, 484–494.

    CAS  Google Scholar 

  19. Mehlen P., Schulze-Osthoff K., Arrigo A.P. 1996. Small stress proteins as novel regulators of apoptosis. J. Biol. Chem. 271, 16510–16514.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Shilova, D.G. Garbuz, M.B. Evgen’ev, O.G. Zatsepina, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 271–276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilova, V.Y., Garbuz, D.G., Evgen’ev, M.B. et al. Small heat shock proteins and adaptation of various Drosophila species to hyperthermia. Mol Biol 40, 235–239 (2006). https://doi.org/10.1134/S0026893306020087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306020087

Key words

Navigation