Skip to main content
Log in

Structure of the archaeal community in the Black Sea photic zone

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Qualitative and quantitative analysis of the structure of the archaeal community of the photic zone of the Black Sea water column was carried out. Real-time PCR revealed 2 × 104 archaeal cells/mL (4.2% of the total cell number) at a 15-m depth. The structure of archaeal communities in the subsurface water column was investigated using the sequencing by synthesis technology (Illumina/Solexa) of the 16S rRNA genes. The Marine Group II phylogenetic cluster belonging to the phylum Euryarchaeota was the most numerous archaeal group (1.2–1.7 × 104 cells/mL). The Marine Group I phylogenetic cluster (phylum Thaumarchaeota) was the second most numerous group (40% of the free-living archaea or 7.7 × 103 cells/mL). Sequences of the ‘Nitrosopumilus’ cluster were revealed among Marine Group I sequences due to high homology (over 90%). A group of archaea belonging to the Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG-6) (phylum Euryarchaeota) was also detected. The 16S rRNA gene sequences belonging to this cluster were revealed only in the suspension fraction. High homology level (over 90%) suggested classification of most DHVEG-6 sequences within the ‘Parvarchaeum’ cluster. In spite of a noticeable methane peak detected at 15-m depth, no sequences of methanogens were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yakushev, E.V., Podymov, O.I., and Chasovnikov, V.R., Seasonal changes in the hydrochemical structure of the Black Sea redox zone, Oceanography, 2005, vol. 18, pp. 48–55.

    Article  Google Scholar 

  2. Pimenov, N.V., Rusanov, I.I., Yusupov, S.K., Fridrich, J., Lein, A.Yu., Wehrli, B., and Ivanov, M.V., Microbial processes at the aerobic-anaerobic interface in the deep-water zone of the Black Sea, Microbiology (Moscow), 2000, vol. 69, pp. 436–448.

    Article  CAS  Google Scholar 

  3. Vetriani, C., Tran, H.V., and Kerkhof, L.J., Finger-printing microbial assemblages from the oxic/anoxic chemocline of the Black Sea, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6481–6488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Durisch-Kaiser, E., Klauser, L., Wehrli, B., and Schubert, C., Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8099–8106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pimenov, N. and Neretin, L., Composition and activities of microbial communities involved in carbon, sulfur, nitrogen and manganese cycling in the oxic/anoxic interface of the Black Sea, in Past and Present Water Column Anoxia, Neretin, L., Ed., New York: Springer, NATO Sci. Ser., 2006, pp. 501–522.

    Chapter  Google Scholar 

  6. Rusanov, I.I., Yusupov, S.K., Savvichev, A.S., Pimenov, N.V., Lein, A.Yu., and Ivanov, M.V., Microbial production of methane in the aerobic water layer of the Black Sea, Doklady Biol. Sci., 2004, vol. 399, no. 4, pp. 493–495.

    Article  CAS  Google Scholar 

  7. DeLong, E.F., Wu, K.Y., Prezelin, B.B., and Jovine, R.V.M., High abundance of archaea in Arctic marine picoplankton, Nature, 1994, vol. 371, pp. 695–697.

    Article  CAS  PubMed  Google Scholar 

  8. Karner, M.B., DeLong, E.F., and Karl, D.M., Archaeal dominance in the mesopelagic zone of the Pacific Ocean, Nature, 2001, vol. 409, no. 6819, pp. 507–510.

    Article  CAS  PubMed  Google Scholar 

  9. Auguet, J.C. and Casamayor, E.O., A hotspot for cold crenarchaeota in the neuston of high mountain lakes, Environ. Microbiol., 2008, vol. 10, no. 4, pp. 1080–1086.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, X., Wakeham, S.G., Putnam, I.F., Astor, Y.M., Scranton, M.I., Chistoserdov, A.Y., and Taylor, G.T., Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization, Appl. Environ. Microbiol., 2006, vol. 72, no. 4, pp. 2679–2690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lam, P., Jensen, M.M., Lavik, G., McGinnis, D.F., Müller, B., Schubert, C.J., Amann, R., Thamdrup, B., and Kuypers, M.M., Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 7104–7109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Coolen, M.J.L., Abbas, B., van Bleijswijk, J., Hopmans, E.C., Kuypers, M.M.M., Wakeham, S.G., Jaap, S., and Damsté, J.S., Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids, Environ. Microbiol., 2007, vol. 9, pp. 1001–1016.

    Article  CAS  PubMed  Google Scholar 

  13. Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Damste, J.S.S., Strous, M., and Jetten, M.S., Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature, 2003, vol. 422, pp. 608–611.

    Article  CAS  PubMed  Google Scholar 

  14. Tsai, Y.L. and Olson, B.H., Rapid method for direct extraction of DNA from soil and sediments, Appl. Environ. Microbiol., 1991, vol. 57, pp. 1070–1074.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kramer, M.F. and Coen, D.M., Enzymatic amplification of DNA by PCR: standard procedures and optimization, Curr. Protoc. Immunol., 2001, vol. 10.20, pp. 10.20.1–10.20.10.

    Google Scholar 

  16. Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.K., Kolganova, T.V., Kaliberda, E.N., Rumsh, L.D., Haertlé, T., and Bonch-Osmolovskaya, E.A., Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia), Appl. Environ. Microbiol., 2009, vol. 75, pp. 286–291.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Stahl, D.A. and Amann, R., Development and application of nucleic acid probes in bacterial systematic, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: Wiley, 1991, pp. 205–248.

    Google Scholar 

  18. Steinberg, L.M. and Regan, J.M., Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge, Appl. Environ. Microbiol., 2008, vol. 74, pp. 6663–6671.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback, R., Sjögreen, B., Strömbom, L., Ståhlberg, A., and Zoric, N., The real-time polymerase chain reaction, Mol. Aspects Med., 2006, vol. 27, pp. 95–125

    Article  CAS  PubMed  Google Scholar 

  20. Walters, W.A., Caporaso, J.G., Lauber, C.L., Berg-Lyons, D., Fierer, N., and Knight, R., PrimerProspector: de novo design and taxonomic analysis of barcoded PCR primers, Bioinformatics, 2011, vol. 27, pp. 2–4.

    Article  Google Scholar 

  21. Podosokorskaya, O.A., Kadnikov, V.V., Gavrilov, S.N., Mardanov, A.V., Merkel, A.Y., Karnachuk, O.V., Ravin, N.V., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae, Environ. Microbiol., 2013, vol. 15, pp. 1759–1771.

    Article  CAS  PubMed  Google Scholar 

  22. Miroshnichenko, M.L., Hippe, H., Stackebrandt, E., Kostrikina, N.A., Chernyh, N.A., Jeanthon, C., Nazina, T.N., Belyaev, S.S., and Bonch-Osmolovskaya, E.A., Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir, Extremophiles, 2001, vol. 5, pp. 85–91.

    Article  CAS  PubMed  Google Scholar 

  23. Massana, R., Murray, A.E., Preston, C.M., and DeLong, E.F., Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel, Appl. Environ. Microbiol., 1997, vol. 63, pp. 50–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Moreira, D., Rodríguez-Valera, F., and López-García, P., Analysis of a genome fragment of a deep-sea uncultivated Group II Euryarchaeota containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes, Environ. Microbiol., 2004, vol. 6, pp. 959–969.

    Article  CAS  PubMed  Google Scholar 

  25. DeLong, E.F., Archaea in coastal marine environment, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, pp. 5685–5689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fuhrman, J.A., McCallum, K., and Davis, A.A., Novel major archaebacterial group from marine plankton, Nature, 1992, vol. 356, pp. 148–149.

    Article  CAS  PubMed  Google Scholar 

  27. Nishizawa, T., Komatsuzaki, M., Kaneko, N., and Ohta, H., Archaeal diversity of upland rice field soils assessed by the terminal restriction fragment length polymorphism method combined with real time quantitative-PCR and a clone library analysis, Microbes Environ., 2008, vol. 23, pp. 237–243.

    Article  PubMed  Google Scholar 

  28. Midgley, D.J., Saleeba, J.A., Stewart, M.I., and McGee, P.A., Novel soil lineages of Archaea are present in semi-arid soils of eastern Australia, Can. J. Microbiol., 2007, vol. 53, pp. 129–138.

    Article  CAS  PubMed  Google Scholar 

  29. Iverson, V., Morris, R.M., Frazar, C.D., Berthiaume, C.T., Morales, R.L., and Armbrust, E.V., Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota, Science, 2012, vol. 335, pp. 587–590.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, A., Jiao, N., Zhang, R., and Yang, Z., Niche partitioning of Marine Group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea, Appl. Environ. Microbiol., 2011, vol. 77, pp. 7469–7478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schattenhofer, M., Fuchs, B.M., Amann, R., Zubkov, M.V., Tarran, G.A., and Pernthaler, J., Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean, Environ. Microbiol., 2009, vol. 11, pp. 2078–2093.

    Article  CAS  PubMed  Google Scholar 

  32. Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A., Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature, 2005, vol. 437, pp. 543–546.

    Article  PubMed  Google Scholar 

  33. Berg, I.A., Kockelkorn, D., Buckel, W., and Fuchs, G., A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea, Science, 2007, vol. 318, pp. 1782–1786.

    Article  CAS  PubMed  Google Scholar 

  34. Swan, B.K., Chaffin, M.D., Martinez-Garcia, M., Morrison, H.G., Field, E.K., Poulton, N.J., Masland, E.D., Harris C.C., Sczyrba, A., Chain, P.S., Koren S., Woyke T., and Stepanauskas R., Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres, PLoS One, 2014, vol. 9(4):e95380.

  35. Ouverney, C.C. and Fuhrman, J.A., Marine planktonic archaea take up amino acids, Appl. Environ. Microbiol., 2000, vol. 66, pp. 4829–4833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hansman, R.L., Griffin, S., Watson, J.T., Druffel, E.R., Ingalls, A.E., Pearson, A., Aluwihare, L.I., The radiocarbon signature of microorganisms in the mesopelagic ocean, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 6513–6518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Takai, K. and Horikoshi, K., Genetic diversity of archaea in deep-sea hydrothermal vent environments, Genetics, 1999, vol. 152, pp. 1285–1297.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Baker, B.J., Comolli, L.R., Dick, G.J., Hauser, L.J., Hyatt, D., Dill, B.D., Land, M.L., Verberkmoes, N.C., Hettich, R.L., and Banfield, J.F., Enigmatic, ultrasmall, uncultivated Archaea, Proc. Natl. Acad. Sci. U. S. A. 2010, vol. 107, pp. 8806–8811.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Comolli, L.R., Baker, B.J., Downing, K.H., Siegerist, C.E., and Banfield, J.F., Three-dimensional analysis of the structure and ecology of a novel, ultrasmall archaeon, ISME J., 2009, vol. 3, pp. 159–167.

    Article  CAS  PubMed  Google Scholar 

  40. Carini, P., White, A.E., Campbell, E.O., and Giovannoni, S.J., Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria, Nat. Commun., 2014, vol. 7, p. 4346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pimenov.

Additional information

Original Russian Text © A.Y. Merkel, V.A. Korneeva, I.Yu. Tarnovetskii, A.L. Bryukhanov, V.K. Chasovnikov, E.A. Taranov, S.V. Toshchakov, N.V. Pimenov, 2015, published in Mikrobiologiya, 2015, Vol. 84, No. 4, pp. 476–484.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkel, A.Y., Korneeva, V.A., Tarnovetskii, I.Y. et al. Structure of the archaeal community in the Black Sea photic zone. Microbiology 84, 570–576 (2015). https://doi.org/10.1134/S0026261715040128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715040128

Keywords

Navigation