Skip to main content
Log in

Sulfate-reducing bacterial communities in the water column of the Gdansk Deep (Baltic Sea)

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Biodiversity of sulfate-reducing bacterial communities in the water column of the Gdansk Deep, Baltic Sea, where H2S had been detected in near-bottom layers, was analyzed by PCR with primers for the 16S rRNA genes of six major phylogenetic subgroups of sulfate-reducing bacteria (SRB). Using denaturing gradient gel electrophoresis followed by sequencing, the nucleotide sequences of reamplified dsrB gene fragments from investigated water samples were determined. For the first time the presence of nucleotide sequences of the dsrB gene was detected by PCR in the water samples from all hydrochemical layers, including subsurface oxic waters. The presence of the 16S rRNA genes of representatives of Desulfotomaculum, Desulfococcus-Desulfonema-Desulfosarcina, and Desulfovibrio-Desulfomicrobium SRB subgroups was also revealed throughout the water column of the Gdansk Deep. Analysis of translated amino acid sequences encoded by the dsrB gene demonstrated the highest homology with the relevant sequences of uncultured SRB from various marine habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekosistemy Baltiki v mae-iyune 1984 goda (Baltic Ecosystems in May–June 1984), Koblents-Mishke, O.I., Ed., Moscow: IO AN SSSR, 1987.

    Google Scholar 

  2. Kot-Wasik, A., Zukowska, B., Dabrowska, D., Debska, J., Pacyna, J., Namiesńik, J., Physical, chemical, and biological changes in the Gulf of Gdańsk ecosystem (southern Baltic Sea), Rev. Environ. Contam. Toxicol., 2003, vol. 179, pp. 1–36.

    Article  CAS  PubMed  Google Scholar 

  3. Jørgensen, B.B., Mineralization of organic matter in the sea bed. The role of sulphate reduction, Nature, 1982, vol. 296, pp. 643–645.

    Article  Google Scholar 

  4. Dolla, A., Fournier, M., and Dermoun, Z., Oxygen defense in sulfate-reducing bacteria, J. Biotechnol., 2006, vol. 126, no. 1, pp. 87–100.

    Article  CAS  PubMed  Google Scholar 

  5. Brioukhanov, A.L., Pieulle, L., and Dolla, A., Antioxidative defense systems of anaerobic sulfate-reducing microorganisms, in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Mendez-Vilas, A., Ed., Microbiology Book Series, Badajoz: Formatex Research Center, 2010, vol. 1, pp. 148–159.

    Google Scholar 

  6. Shanks, A.L. and Reeder, M.L., Reducing microzones and sulfide production in marine snow, Mar. Ecol. Prog. Ser., 1993, vol. 96, pp. 43–47.

    Article  Google Scholar 

  7. Bryukhanov, A.L., Korneeva, V.A., Kanapatskii, T.A., Zakharova, E.E., Men’ko, E.V., Rusanov, I.I., and Pimenov, N.V., Investigation of the sulfate-reducing bacterial community in the aerobic water and chemocline zone of the Black Sea by the FISH technique, Microbiology (Moscow), 2011, vol. 80, no. 1, pp. 108–116.

    Article  CAS  Google Scholar 

  8. Sinkko, H., Lukkari, K., Jama, A.S., Sihvonen, L.M., Sivonen, K., Leivuori, M., Rantanen, M., Paulin, L., and Lyra, C., Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges, PLoS One, 2011, vol. 6, no. 6. e21555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. de Rezende, J.R., Kjeldsen, K.U., Hubert, C.R., Finster, K., Loy, A., and Jørgensen, B.B., Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years, ISME J., 2013, vol. 7, no. 1, pp. 72–84.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Geets, J., Borremans, B., Diels, L., Springael, D., Vangronsveld, J., van der Lelie, D., and Vanbroekhoven, K., DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria, J. Microbiol. Methods, 2006, vol. 66, no. 2, pp. 194–205.

    Article  CAS  PubMed  Google Scholar 

  11. Agrawal, A. and Lal, B., Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR, FEMS Microbiol. Ecol., 2009, vol. 69, no. 2, pp. 301–312.

    Article  CAS  PubMed  Google Scholar 

  12. Bagwell, C.E., Formolo, M., Ye, Q., Yeager, C.M., Lyons, T.W., and Zhang, C.L., Direct analysis of sulfate reducing bacterial communities in gas hydrateimpacted marine sediments by PCR-DGGE, J. Bas. Microbiol., 2009, vol. 49, no. 1, pp. 87–92.

    Article  Google Scholar 

  13. Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L.L., Stahl, D.A., and Wagner, M., Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes, J. Bacteriol., 2001, vol. 183, no. 2, pp. 6028–6035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Devereux, R., Delaney, M., Widdel, F., and Stahl, D.A., Natural relationships among sulfatereducing eubacteria, J. Bacteriol., 1989, vol. 171, no. 12, pp. 6689–6695.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Nowaczyk, F.J., Schnaare, R.L., Ofner, C.M., and Wigent, R.J., A spectrofotometric modification of the Winkler method for measurement of dissolved oxygen, Pharm. Res., 1993, vol. 10, no. 2, pp. 305–308.

    Article  CAS  PubMed  Google Scholar 

  16. Trüper, H.G. and Schlegel, H.G., Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements in growing cells of Cromatium okenii, A. van Leeuwenhoek. J. Microbiol. Serol., 1964, vol. 30, pp. 225–238.

    Article  Google Scholar 

  17. Daly, K., Sharp, R.J., and McCarthy, A.J., Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria, Microbiology (UK). 2000, vol. 146, no. 7, pp. 1693–1705.

    CAS  Google Scholar 

  18. Edwards, U., Rogall, T., Blöcker, H., Emde, M., and Böttger, E.C., Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA, Nucleic Acids Res., 1989, vol. 17, no. 19, pp. 7843–7853.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Dar, S.A., Kuenen, J.G., and Muyzer, G., Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities, Appl. Environ. Microbiol., 2005, vol. 71, no. 5, pp. 2325–2330.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Mirobiol., vol. 59, no. 3, pp. 695–700.

  21. Krekeler, D., Teske, A., and Cypionka, H., Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat, FEMS Microbiol. Ecol., 1998, vol. 25, pp. 89–96.

    Article  CAS  Google Scholar 

  22. Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A., and Stahl, D.A., Phylogeny of dissimilatory sulfite reductases supports early origin of sulfate respiration, J. Bacteriol., 1998, vol. 180, no. 11, pp. 2975–2982.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Perez-Jimenez, J.R. and Kerkhof, L.J., Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB), Appl. Environ. Microbiol., 2005, vol. 71, no. 2, pp. 1004–1011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zverlov, V., Klein, M., Lücker, S., Friedrich, M.W., Kellermann, J., Stahl, D.A., Loy, A., and Wagner, M., Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited, J. Bacteriol., 2005, vol. 187, no. 6, pp. 2203–2208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dar, S.A., Yao, L., Dongen, U.V., Kuenen, J.G., and Muyzer, G., Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers, Appl. Environ. Microbiol., 2007, vol. 73, no. 2, pp. 594–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Miletto, M., Bodelier, P.L.E., and Laanbroek, H.J., Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments, J. Microbiol. Methods, 2007, vol. 70, no. 1, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  27. Leloup, J., Loy, A., Knab, N.J., Borowski, C., Wagner, M., and Jørgensen, B.B., Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea, Environ. Microbiol., 2007, vol. 9, no. 3, pp. 131–142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pimenov.

Additional information

Original Russian Text © V.A. Korneeva, N.V. Pimenov, A.V. Krek, T.P. Tourova, A.L. Bryukhanov, 2015, published in Mikrobiologiya, 2015, Vol. 84, No. 2, pp. 250–260

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneeva, V.A., Pimenov, N.V., Krek, A.V. et al. Sulfate-reducing bacterial communities in the water column of the Gdansk Deep (Baltic Sea). Microbiology 84, 268–277 (2015). https://doi.org/10.1134/S002626171502006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171502006X

Keywords

Navigation