Skip to main content
Log in

Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Microbiological and biogeochemical investigation of the water column of oligotrophic Lake Baikal at the sites of the K2 and Bolshoi mud volcanoes and the Gorevoy Utes oil seep was carried out in July 2013. Total microbial numbers (TMN), cell numbers of type I and type II methanotrophs, and methane concentrations were measured; the rate of methane oxidation was determined. Methane concentrations in Lake Baikal water column varied from 0.09 to 1 μL/L, while methane oxidation rates varied from 0.007 to 0.9 nL/(L day). The highest rates of methane oxidation were revealed in the near-bottom water horizons at the sites of the Bolshoy mud volcano and the Gorevoy Utes oil seep. These were the sites where the most pronounced anomalies in methane concentration were also detected. TMN varied from 0.123 × 106 to 1.64 × 106 cells/mL. Methanotrophic bacteria were revealed in the water column at all sites, their abundance did not always correlate with methane concentrations and the rates of methane oxidation. Methanotrophs constituted not more than 1.63% of the total microbial number, with their highest abundance in the upper 200 m of the water column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khlystov, O., De Batist, M., Shoji, H., Hachikubo, A., Nishio, S., Naudts, L., Poort, J., Khabuev, A., Belousov, O., Manakov, A., and Kalmychkov, G., Gas hydrate of Lake Baikal: discovery and varieties, J. Asian Earth Sci., 2013, vol. 62, no. 1, pp. 162–166.

    Article  Google Scholar 

  2. Granin, N.G., Mizandrontsev, I.B., Obzhirov, A.I., Vereshchagina, O.F., Gnatovskii, R.Yu., and Zhdanov A.A., Oxidation of methane in the water column of Lake Baikal, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 784–786.

    Article  CAS  Google Scholar 

  3. Egorov, A.V., Zemskkaya, T.I., and Grachev, M.A., Major patterns of methane distribution in Lake Baikal water and sediments, in Tez. dokl. XV Mezhd. shkoli morskoi geologii. Geologiya morei i okeanov (Proc. 15 Int. School Mar. Geol. Geology of Seas and Oceans), Moscow: GEOS, 2003, vol. 2, pp. 169–170.

    Google Scholar 

  4. Schmid, M., De Batist, M., Granin, N.G., Kapitanov, V.A., Mc Ginnis, D.F., Mizandrontsev, I.B., Obzhirov, A.I., and Wiiest, A., Sources and sinks of methane in Lake Baikal: a synthesis of measurements and modeling, Limnol. Oceanogr., 2007, vol. 52, no. 5, pp. 1824–1837.

    Article  CAS  Google Scholar 

  5. Obzhirov, A.I., Vereshchagina, O.F., Calyuk, A.A., Granin, N.G., Mizandrintsev, I.B., Ageev, A.A., Druzhinin, V.V., and Gnatovskii, R.Yu., Methane distribution in Lake Baikal water, in Chetvetraya Vereshchaginskaya Baikal’skaya konferentsiya. Tezisy dokladov i soobshchenii (Proc. 4th Vereshchagin Baikal Conf.), 2005, Irkutsk: Inst. Geogr. Sib. Branch, Russ. Acad. Sci, pp. 141–142.

    Google Scholar 

  6. Granin, N.G., Vereshchagina, O.F., Kozlov, V.V., Obzhirov, A.I., Makarov, M.M., Gnatovskii, R.Yu., Ivanov, V.G., Blinov, V.V., and Mizandrintsev, I.B., Changing methane concentrations in Lake Baikal: possible cause, in Ross. Konf. “Gazovye gidraty v ekosisteme Zemli” (Russ. Conf. “Gas Hydrates in Earth Ecosystem”), Novosibirsk: Inst. Inorg. Chem., Sib. Barnch, Russ. Acad. Sci., 2014, p. 25.

    Google Scholar 

  7. Egorov, A.V., Nigmatullin, R.I., and Rozhkov, A.N., Observation of formation and decomposition of gas hydrates from a Mir deep-water submersible, in Ross. Konf. “Gazovye gidraty v ekosisteme Zemli” (Russ. Conf. “Gas Hydrates in Earth Ecosystem”), 2014, Novosibirsk: Inst. Inorg. Chem., Sib. Barnch, Russ. Acad. Sci., p. 27.

    Google Scholar 

  8. Borowski, W.S., A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America, Chem. Geol., 2004, vol. 205, pp. 311–346.

    Article  CAS  Google Scholar 

  9. Dickens, G.R., Modeling the global carbon cycle with a gas hydrate capacitor: Significance for the Latest Paleocene thermal maximum, in Natural Gas Hydrates: Occurrence, Distribution and Detection, AGU Geophys. Monograph Ser., 2001, pp. 19–38.

    Google Scholar 

  10. Bowman, J., The methanotrophs—the families Methylococcaceae and Methylocystaceae, in The Prokaryotes, New York: Springer, 2006, vol. 5, pp. 266–289.

    Chapter  Google Scholar 

  11. Pimenov, N.V., Kallistova, A.Yu., Rusanov, I.I., Yusupov, S.K., Montonen, L., Jurgens, G., Münster, U., Nozhevnikova, A.N., and Ivanov, M.V., Methane formation and oxidation in the meromictic oligotrophic Lake Gek-Gel (Azerbaijan), Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 247–252.

    Article  CAS  Google Scholar 

  12. Ivanov, M.V., Rusanov, I.I., Pimenov, N.V., Bairamov, I.T., Yusupov, S.K., Savvichev, A.S., Lein, A.Yu., and Sapozhnikov, V.V., Microbial processes of the carbon and sulfur cycles in Lake Mogil’noe, Microbiology (Moscow), 2001, vol. 70, no. 5, pp. 583–593.

    Article  CAS  Google Scholar 

  13. Carini, S., Bano, N., Le Cleir, G., and Joye, S.B., Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA), Environ. Microbiol., 2005, vol. 7, no. 8, pp. 1127–1138.

    Article  CAS  PubMed  Google Scholar 

  14. Lein, A.Yu. and Ivanov, M.V., Biogeokhimicheskii tsykl metana v okeane (Methane Biogeochemical Cycle in the Ocean), Moscow: Nauka, 2009.

    Google Scholar 

  15. Zemskaya, T.I., Khlystov, O.M., Egorov, A.V., Pogodaeva, T.V., Kalmychkov, G.V., Shubenkova, O.V., Chernitsyna, C.M., Vorob’eva, S.S., and Grachev, M.A., Integral investigation of gas hydrate manifestations in Lake Baikal sediments, in Izmenenie orkuzhayushei sredy i klimata (Environmental and Climatic Changes), vol. 4, Biospheric Processes: Changes in Russian Soil, Vegetation, and Territorial Water, Matter Turnover Affected by Global Climatic Changes and Catastrophic Processes, Zavarzin, G.A. and Kudeyariv, V.N., Eds., Moscow: IFKh and BPP, Russ. Acad. Scii., 2008, pp. 125–152.

    Google Scholar 

  16. Namsaraev, B.B., Zemskaya, T.I., Dagurova, O.P., Gainutdinova, E.A., Shubenkova, O.V., and Egorov, A.V., Bacterial methane oxidation in Lake Baikal, Trudy Inst. Mikrobiol. im. Vinogradskogo (Proc. Winogradsky Inst. Microbiol.), vol. 13, Moscow: Nauka, 2006, pp. 113–146.

    Google Scholar 

  17. Bol’shakov, A.M. and Egorov, A.V., Application of phase equilibrium degassing in gasometric research, Okeanologiya, 1987, vol. 27, no. 5, pp. 861–862.

    Google Scholar 

  18. Porter, K.G., The use of DAPI for identifying and counting aquatic microflora, Limnol Oceanogr., 1980, vol. 25, pp. 943–948.

    Article  Google Scholar 

  19. Eller, G., Stubner, S., and Frenzel, P., Group-specific 16S rRNA targeted probes for the detection of type I and II methanotrophs by fluorescence in situ hybridization, FEMS Microbiol. Lett., 2001, vol. 198, pp. 91–97.

    Article  CAS  PubMed  Google Scholar 

  20. Bourne, D.G., Holmes, A.J., Ivensen, N., and Murrell, J.C., Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidizing bacteria, FEMS Microbiol. Ecol., 2000, vol. 31, pp. 29–38.

    Article  CAS  PubMed  Google Scholar 

  21. Gloeckner, F.O., Amann, R., Alfreider, A., Pernthaler, J., Psenner, R., Trebesius, K., and Schleifer, K.-H., An in situ hybridization protocol for detection and identification of planktonic bacteria, Syst. Appl. Microbiol., 1996, vol. 19, pp. 403–406.

    Article  CAS  Google Scholar 

  22. Galchenko, V.F., Sulfate reduction, methane production, and methane oxidation in various water bodies of Bunger Hills Oasis of Antarctica, Microbiologiya, 1994, vol. 63, pp. 683–698.

    CAS  Google Scholar 

  23. Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., and Kam W. Tang, Microbial methane production in oxygenated water column of an oligotrophic lake, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 19657–19661.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Maksimova, E.A. and Maksimov, V.N., Mikrobiologiya vod Baikala (Aquatic Microbiology of Lake Baikal), Irkutsk: Irkutsk. Gos. Univ., 1989.

    Google Scholar 

  25. Bekman, M.Yu. and Afanas’eva, E.L., Distribution and occurrence of Macrohectopus, in Biologicheskaya produktivnost’ pelagiali Baikala i ee izmenchivost’ (Biological Productivity of Lake Baikal Pelagic Zone and Its Variability), Novosibirsk: Nauka, 1977, pp. 76–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zakharenko.

Additional information

Original Russian Text © A.S. Zakharenko, N.V. Pimenov, V.G. Ivanov, T.I. Zemskaya, 2015, published in Mikrobiologiya, 2015, Vol. 84, No. 1, pp. 98–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharenko, A.S., Pimenov, N.V., Ivanova, V.G. et al. Detection of methane in the water column at gas and oil seep sites in central and southern Lake Baikal. Microbiology 84, 90–97 (2015). https://doi.org/10.1134/S0026261715010178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715010178

Keywords

Navigation