Skip to main content
Log in

Measuring the kinetic isotope effect at natural isotopic abundances for discriminating between the homogeneous and heterogeneous catalytic mechanisms in the Heck and Suzuki reactions

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetic isotope effect (KIE) at the natural abundances of bromine and carbon isotopes in the substrates of the Heck and Suzuki reactions have been investigated to determine the true nature of catalyst in these reactions. Data processing has demonstrated that statistically significant differences between KIE values for the Suzuki reaction of nonactivated bromobenzene are observed upon the replacement of the soluble catalyst precursor with the insoluble one. This finding unambiguously indicates that the reaction takes place on heterogeneous palladium species. Similar experiments on the Heck reaction have demonstrated that the KIE values are insensitive to the nature of the catalyst precursor, which is consistent with the true homogeneous mechanism of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oestreich, M., The Mizoroki–Heck Reaction, Münster: Wiley., 2009, 608 p.

    Book  Google Scholar 

  2. Suzuki, A., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, no. 30, p. 6723.

    Article  Google Scholar 

  3. Schmidt, A.F. and Kurokhtina, A.A., Kinet. Catal., 2012, vol. 53, no. 6, p. 714.

    Article  CAS  Google Scholar 

  4. Crabtree, R.H., Chem. Rev., 2012, vol. 112, no. 3, p. 1536.

    Article  CAS  Google Scholar 

  5. Phan, N.T.S., Van Der Sluys, M., and Jones, C.W., Adv. Synth. Catal., 2006, vol. 348, no. 6, p. 609.

    Article  CAS  Google Scholar 

  6. Schmidt, A.F., Al Halaiqa, A., and Smirnov, V.V., Synlett, 2006, vol. 2006, no. 18, p. 2861.

    Article  Google Scholar 

  7. Köhler, K., Kleist, W., and Pröckl, S.S., Inorg. Chem., 2007, vol. 46, no. 6, p. 1876.

    Article  Google Scholar 

  8. De Vries, J.G., Dalton Trans., 2006, vol. 2006, no. 3, p. 421.

    Article  Google Scholar 

  9. Martra, G., Bertinetti, L., Gerbaldi, C., Maggi, R., Sartori, G., and Coluccia, S., Catal. Lett., 2009, vol. 132, nos. 1–2, p. 50.

    Article  CAS  Google Scholar 

  10. Islam, M., Mondal, P., Roy, A., and Tuhina, K., Transition Met. Chem., 2010, vol. 35, no. 4, p. 491.

    Article  CAS  Google Scholar 

  11. Jana, S., Dutta, B., Bera, R., and Koner, S., Inorg. Chem., 2008, vol. 47, no. 12, p. 5512.

    Article  CAS  Google Scholar 

  12. Schmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Kinet. Catal, 2012, vol. 53, no. 1, p. 84.

    Article  CAS  Google Scholar 

  13. Shi, Z., Li, B., Wan, X., Cheng, J., Fang, Z., Cao, C., Qin, C., and Wang, Y., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 29, p. 5554.

    Article  CAS  Google Scholar 

  14. Bohm, V.P.W. and Herrmann, W.A., Chem. Eur. J., 2001, vol. 7, no. 19, p. 4193.

    Article  Google Scholar 

  15. Schmidt, A.F. and Smirnov, V.V., Kinet. Catal., 2005, vol. 46, no. 4, p. 495.

    Article  Google Scholar 

  16. Lane, B.S., Brown, M.A., and Sames, D., J. Am. Chem. Soc., 2005, vol. 127, no. 22, p. 8050.

    Article  CAS  Google Scholar 

  17. Chuprakov, S., Rubin, M., and Gevorgyan, V., J. Am. Chem. Soc., 2005, vol. 127, no. 11, p. 3714.

    Article  CAS  Google Scholar 

  18. Pinto, A., Neuville, L., Retailleau, P., and Zhu, J., Org. Lett., 2006, vol. 8, no. 21, p. 4927.

    Article  CAS  Google Scholar 

  19. Evans, S., PhD Thesis, College Station, Tex.: Texas A & M Univ., 2004, p. 30.

    Google Scholar 

  20. Chiong, H.A., Pham, Q.-N., and Daugulis, O., J. Am. Chem. Soc., 2007, vol. 129, no. 32, p. 9879.

    Article  CAS  Google Scholar 

  21. Sylvester, K.T., Wu, K., and Doyle, A.G., J. Am. Chem. Soc., 2012, vol. 134, no. 41, p. 16967.

    Article  CAS  Google Scholar 

  22. Geary, L.M. and Hultin, P.G., Eur. J. Org. Chem., 2010, vol. 2010, no. 29, p. 5563.

    Article  Google Scholar 

  23. Shmidt, A.F. and Khalaika, A., Kinet. Catal., 1998, vol. 39, no. 6, p. 803.

    CAS  Google Scholar 

  24. Schmidt, A.F., Al-Halaiqa, A., and Smirnov, V.V., J. Mol. Catal. A: Chem., 2006, vol. 250, nos. 1–2, p. 131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Schmidt.

Additional information

Original Russian Text © A.A. Kurokhtina, E.V. Larina, A.F. Schmidt, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 1, pp. 34–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurokhtina, A.A., Larina, E.V. & Schmidt, A.F. Measuring the kinetic isotope effect at natural isotopic abundances for discriminating between the homogeneous and heterogeneous catalytic mechanisms in the Heck and Suzuki reactions. Kinet Catal 57, 32–38 (2016). https://doi.org/10.1134/S0023158415060063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415060063

Keywords

Navigation