Skip to main content
Log in

Theoretical study of the mechanism generating azomethine ylide from formaldehyde and glycine

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism to generate azomethine ylide from formaldehyde and glycine is systematically investigated. The density functional theory at the B3LYP/6-311++G(d,p) level is employed for both geometry optimization and single point energy calculation. Our results indicate that two possible pathways can lead to the generation of the carbinolamine intermediate with a favorable step-wise pathway. However, as for the step to form azomethine ylide, a concerted elimination of water and carbon dioxide is preferred. This calculation result is totally different from the widely accepted revised Rizzi mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, vols. 1/2, Wiley-Interscience, New York, 1984

  2. A. Padwa and W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, John Wiley & Sons Inc., New York (2002). ch. 3

    Book  Google Scholar 

  3. K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 98, 863 (1998).

    Article  CAS  Google Scholar 

  4. C. Nájera and J. M. Sansano, Curr. Org. Chem., 7, 1105 (2003).

    Article  Google Scholar 

  5. O. Tsuge and S. Kanemasa, Adv. Heterocycl. Chem., 45, 231 (1989).

    Article  CAS  Google Scholar 

  6. V. A. Kogan, N. I. Dorokhova, and O. A. Osipov, J. Struct. Chem., 12, 1023 (1971).

    Article  Google Scholar 

  7. V. V. Zelentsov, A. P. Bogdanov, E. G. Rukhadze, and G. P. Talyzenkova, J. Struct. Chem., 14, 564 (1973).

    Article  CAS  Google Scholar 

  8. E. M. Averyanov J. Struct. Chem., 34, 567 (1993).

    Article  Google Scholar 

  9. L. I. Kozhevina, E. B. Prokopenko, V. I. Rybachenko, and E. V. Titov, J. Struct. Chem., 36, 276 (1995).

    Article  Google Scholar 

  10. V. A. Varnek, L. N. Mazalov, A. I. Uraev, A. L. Nivorozhkin, and A. D. Garnovskii, J. Struct. Chem., 41, 427 (2000).

    Article  Google Scholar 

  11. M. S. Gruzdev, U. V. Chervonova, A. M. Kolker, and N. E. Domrachev, J. Struct. Chem., 52, 83 (2011).

    Article  CAS  Google Scholar 

  12. G. A. Zhurko, V. V. Aleksandriiskii, and V. A. Burmistrov, J. Struct. Chem., 52, 227 (2011).

    Article  CAS  Google Scholar 

  13. M. S. Gruzdev, U. V. Chervonova, A. M. Kolker, and A. S. Golubeva, J. Struct. Chem., 53, 845 (2012).

    Article  CAS  Google Scholar 

  14. M. S. Gruzdev, N. E. Domracheva, A. I. Aleksandrov, V. P. Osipova, U. V. Chervonova, A. M. Kolker, T. V. Pashkova, and D. V. Barakhtenko, J. Struct. Chem., 53, 1062 (2012).

    Article  CAS  Google Scholar 

  15. H. W. Heine and R. Peavy, Tetrahedron Lett., 3123 (1965).

    Google Scholar 

  16. A. Padwa and L. Hamilton, Tetrahedron Lett., 4363 (1965).

    Google Scholar 

  17. R. Huisgen, W. Scheer, G. Szeimies, and H. Huber, Tetrahedron Lett., 397 (1966).

    Google Scholar 

  18. E. Vedejs and G. R. Martinez, J. Am. Chem. Soc., 101, 6452 (1979).

    Article  CAS  Google Scholar 

  19. J. A. Deyrup and W. A. Szabo, J. Org. Chem., 40, 2048 (1975).

    Article  CAS  Google Scholar 

  20. R. Huisgen, H. Gotthardt, and H. O. Bayer, Angew. Chem., Int. Ed. Engl., 3, 135 (1964).

    Article  Google Scholar 

  21. H. Gotthardt, R. Huisgen and H. O. Bayer, J. Am. Chem. Soc., 92, 4340 (1970).

    Article  CAS  Google Scholar 

  22. R. Grigg and J. Kemp, Chem. Commun., 125 (1977).

    Google Scholar 

  23. R. Grigg and J. Kemp, Chem. Commun., 109 (1978).

    Google Scholar 

  24. J. A. Deyrup and W. A. Szabo, J. Org. Chem., 40, 2048 (1975).

    Article  CAS  Google Scholar 

  25. C. L. Deyrup, J. A. Deyrup, and M. Hamilton, Tetrahedron Lett., 3437 (1977).

    Google Scholar 

  26. J. A. Deyrup and G. S. Kuta, J. Org. Chem., 43, 501 (1978).

    Article  CAS  Google Scholar 

  27. G. P. Rizzi, J. Org. Chem., 35, 2069 (1970).

    Article  CAS  Google Scholar 

  28. I. Zugravescu and M. Petrovanu, N-Ylide Chemistry, McGraw-Hill, New York (1976).

    Google Scholar 

  29. A. Eschenmoser, Chem. Soc. Rev., 5, 377 (1976).

    Article  CAS  Google Scholar 

  30. D. Seebach, M. Boes, R. Naef, and W. B. Schweizer, J. Am. Chem. Soc., 105, 5390 (1983).

    Article  CAS  Google Scholar 

  31. O. Tsuge, S. Kanemasa, M. Ohe, and S. Takenaka, Chem. Lett., 973 (1986).

    Google Scholar 

  32. O. Tsuge, S. Kanemasa, M. Ohe, and S. Takenaka, Bull. Chem. Soc. Jpn., 60, 4079 (1987).

    Article  CAS  Google Scholar 

  33. L. R. Domingo, J. Org. Chem., 64, 3922 (1999).

    Article  CAS  Google Scholar 

  34. X. Lu, F. Tian, X. Xu, N. Wang, and Q. Zhang, J. Am. Chem. Soc., 125, 10459 (2003).

    Article  CAS  Google Scholar 

  35. Y. Cao and K. N. Houk, J. Mater. Chem., 21, 1503 (2011).

    Article  CAS  Google Scholar 

  36. D. H. Ess and K. N. Houk, J. Am. Chem. Soc., 130, 10187 (2008).

    Article  CAS  Google Scholar 

  37. K. Alimohammadi, Y. Sarrafi, M. Tajbakhsh, S. Yeganegi, and M. Hamzehloueian, Tetrahedron, 67, 1589 (2011).

    Article  CAS  Google Scholar 

  38. M. J. Aurell, L. R. Domingo, P. Pérez, and R. Contreras, Tetrahedron, 60, 11503 (2004).

    Article  CAS  Google Scholar 

  39. K. N. Rankin, J. W. Gauld, and R. J. Boyd, J. Phys. Chem. A, 106, 5155 (2002).

    Article  CAS  Google Scholar 

  40. P. Wu, J. Struct. Chem., 54, No. 5, 983 (2013).

    Article  CAS  Google Scholar 

  41. P. Wu, J. Struct. Chem., 55, No. 1, 147 (2014).

    Article  CAS  Google Scholar 

  42. P. Wu, J. Struct. Chem., 55, No. 3, 515 (2014).

    Article  CAS  Google Scholar 

  43. P. Wu, J. Truond, Y. Huang, and J. Li, J. Theor. Comput. Chem., 12, 1350064 (2013).

    Article  Google Scholar 

  44. P. Wu, X. Chen, J. Li, and Y. Huang, Comput. Theor. Chem., 1030, 67 (2014).

    Article  CAS  Google Scholar 

  45. P. Wu and J. Li, J. Theor. Comput. Chem., 13, 1450051 (2014).

    Article  CAS  Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  47. C. Gonzales and H. B. Schlegel, J. Chem. Phys., 90, 2154 (1989).

    Article  Google Scholar 

  48. C. Gonzales and H. B. Schlegel, J. Phys. Chem., 94, 5523 (1990).

    Article  Google Scholar 

  49. N. E. Hall and B. J. Smith, J. Phys. Chem. A, 102, 4930 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wu.

Additional information

Original Russian Text © 2015 P. Wu.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1327-1331, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P. Theoretical study of the mechanism generating azomethine ylide from formaldehyde and glycine. J Struct Chem 56, 1262–1267 (2015). https://doi.org/10.1134/S0022476615070057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615070057

Keywords

Navigation