Skip to main content
Log in

Molecular mobility and the structure of polar liquids

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Self-diffusion coefficients of different classes of polar solvents are measured by the proton spin echo method in the temperature range of 288–318 K. In the same temperature range viscosities and dielectric relaxation times of the liquids under study are measured or taken from the literature and the activation energies of self-diffusion processes, viscous flow, and dielectric relaxation are calculated. The results obtained are compared with the literature data on structural relaxation times in the studied solvents and the conclusion is drawn about the role of the spatial hydrogen bond network in the mobility of molecules forming this network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Oskotskii, Fiz. Tverd. Tela, 5, No. 4, 1082 (1963).

    CAS  Google Scholar 

  2. A. G. Novikov, Slow Neutron Scattering and Molecular Dynamics of Water in a Wide Range of Temperatures and Pressures [in Russian], Diss. ... Dr. Phys.-Math. Sci., Obninsk (1989).

    Google Scholar 

  3. I. Z. Fisher, Zh. Èksp. Teor. Fiz., 61, No. 4, 1647 (1971).

    CAS  Google Scholar 

  4. L. A. Bulavin, T. A. Lokotosh, and N. P. Malomuzh, J. Mol. Liq., 137, 1 (2008).

    Article  CAS  Google Scholar 

  5. Yu. P. Syrnikov, in: Solutions as Electrolyte Systems: Microdynamics Problems in Liquids and Solutions [in Russian], Ivanovo (1988).

    Google Scholar 

  6. Ya. I. Frenkel, Kinetic Theory of Liquids [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1945).

    Google Scholar 

  7. S. Gleston, K. J. Laider, and H. Eyring, The Theory of Absolute Rate Processes, McGraw-Hill Book Company, New York (1941).

    Google Scholar 

  8. N. P. Malomuzh and I. Z. Fisher, J. Struct. Chem., 14, No. 6., 1032 (1973).

    Google Scholar 

  9. N. P. Malomuzh and V. S. Troyanovskii, Fiz. Zhidkogo Sostoyaniya, Vysshaya Shkola, Kiev, No. 10, 81 (1982).

    Google Scholar 

  10. M. N. Buslaeva and O. Ya. Samoilov, Chem. Phys. Solvat., Part A, R. Dogonadze et al. (eds.), Elsevier, 391 (1985).

  11. N. P. Malomuzh and V. S. Troyanovskii, Zh. Fiz. Khim., 57, 2967 (1983).

    CAS  Google Scholar 

  12. M. N. Rodnikova, Zh. Fiz. Khim., 67, No. 2, 275 (1993).

    CAS  Google Scholar 

  13. M. N. Rodnikova and N. A. Chumaevskii, J. Struct. Chem., 47,Suppl., 151 (2006).

    Article  Google Scholar 

  14. M. N. Rodnikova, in: Structural Self-Organization in Solutions and at the Interface [in Russian], Izd. RFFI (2008), p. 151.

    Google Scholar 

  15. Yu. P. Syrnikov, N. V. Penkina, and M. N. Rodnikova, Zh. Fiz. Khim., 80, No. 10, 1743 (2006).

    Google Scholar 

  16. I. Bako, T. Grosz, G. Palinskas, and M. C. Bellissent-Funel, J. Chem. Phys., 118, 3215 (2003).

    Article  CAS  Google Scholar 

  17. M. N. Rodnikova, A. B. Solovei, and I. A. Solonina, Zh. Neorg. Khim., 57, 297 (2012).

    Google Scholar 

  18. D. Chopra, T. N. G. Row, E. Arunan, and R. A. Klein, J. Mol. Struct., 964, 126 (2010).

    Article  CAS  Google Scholar 

  19. P. S. Jamet-Delcroix, Acta Crystallogr., B29, 977 (1983).

    Google Scholar 

  20. D. Mootz, D. Brodalla, and M. Wiebcke, Acta Crystallogr., C45, 754 (1989).

    CAS  Google Scholar 

  21. Aldrich Catalogue Handbook of Fine Chemical (1989).

  22. F. M. Samigullin, M. N. Rodnikova, and T. M. Val’kovskaya, Zh. Fiz. Khim., 42, 1049 (1997).

    CAS  Google Scholar 

  23. Y. Maham, C.-N. Liew, and A. E. Mather, J. Solut. Chem., 31, 743 (2002).

    Article  CAS  Google Scholar 

  24. CRC Handbook of Chem. Phys., 74th ed. (1993–1994).

  25. O. Ya. Osipov, V. I. Minkin, and A. D. Granovskii, Handbook on Dipole Moments [in Russian], Vysshaya Shkola, Moscow (1971).

    Google Scholar 

  26. Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids [in Russian], Izd. MAI, Moscow (1999).

    Google Scholar 

  27. M. N. Rodnikova, Features of Solvents with the Spatial Network of Hydrogen Bonds [in Russian], Diss. ... Dr. Chem. Sc., Moscow (1998).

    Google Scholar 

  28. V. N. Kartsev, M. N. Rodnikova, V. V. Tsepulin, K. T. Dudnikova, and V. G. Markova, Zh. Strukt. Khim., 27, 187 (1986).

    CAS  Google Scholar 

  29. J. F. Messerly, H. I. Finke, et al., J. Chem. Thermodyn., 7, 1029 (1975).

    Article  CAS  Google Scholar 

  30. Handbook of Phys. Chem. Properties and Environmental Fate for Organic Chem., LLC V. IV, 3236 (2006).

  31. P. N. Nikolaev and I. B. Rabinovich, Zh. Fiz. Khim., 41, No. 9, 2191 (1967).

    CAS  Google Scholar 

  32. CRC Handbook of Chem. Phys., 85th ed. (2004).

  33. Yu. Ya. Kharitonov, È. G. Khoshabova, M. N. Rodnikova, K. T. Dudnikova, and A. B. Razumova, Dokl. Akad. Nauk SSSR, 304, No. 4, 917 (1989).

    CAS  Google Scholar 

  34. B. S. Krumgalz, and J. G. M. Barthel, Z. Phys. Chemie NF, Bd. 142, 167 (1984).

    Article  CAS  Google Scholar 

  35. O. Laundamer, G. Costenu, and C. Mateescu, Rev. Roum. Chim., 19, 1429 (1974).

    Google Scholar 

  36. J. Barthel, H.-J. Gores, P. Carlier, F. Feuerlein, and M. Utz, Buns. Ges. Phys. Chem., 87, 436 (1983).

    Article  CAS  Google Scholar 

  37. A. Sh. Agishev and F. M. Samigullin, Prib. Tekh. Eksp., 30, 148 (1966).

    Google Scholar 

  38. F. M. Samigullin, Some Questions of Physics of Liquids [in Russian], Kazan (1973), p. 24.

    Google Scholar 

  39. B. P. Jordan, R. J. Sheppard, and S. Szwarnowski, J. Phys. D: Appl. Phys., 11, 695 (1978).

    Article  CAS  Google Scholar 

  40. B. S. Narwade, P. G. Gawali, and G. M. Kalamse, Int. J. Chem. Sci., 9, 1025 (2011).

    CAS  Google Scholar 

  41. P. B. Undre, P. W. Khirad, S. B. Jagdale, et al., J. Mol. Liq., 137, 147 (2008).

    Article  CAS  Google Scholar 

  42. A. V. Patil, G. N. Shinde, and V. P. Pawar, J. Mol. Liq., 168, 42 (2012).

    Article  CAS  Google Scholar 

  43. A. C. Kumbharkhane, S. M. Puranik, and S. C. Mehrotra, J. Sol. Chem., 22, 219 (1993).

    Article  CAS  Google Scholar 

  44. E. Volf, Bull. Soc. Chim. Belg., 93, 839 (1984).

    Google Scholar 

  45. E. A. S. Cavell, J. Chem. Soc. Faraday Trans., 2, 78 (1974).

    Article  Google Scholar 

  46. M. N. Rodnikova, Z. Sh. Idiyatullin, and I. A. Solonina, Zh. Fiz. Khim. (to be published).

  47. D. Èisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press, New York (1969).

    Google Scholar 

  48. F. Sciortino, A. Geiger, and H. E. Stanley, J. Chem. Phys., 96, 3857 (1992).

    Article  CAS  Google Scholar 

  49. M. N. Rodnikova, S. A. Zasypkin, and G. G. Malenkov, Dokl. Akad. Nauk, 324, No. 2, 368 (1992).

    CAS  Google Scholar 

  50. A. Geiger, M. Kleene, D. Paschek, and A. Rehtanz, J. Mol. Liq., 106, Nos. 2/3, 131 (2003).

    Article  CAS  Google Scholar 

  51. Y. P. Syrnikov and N. V. Penkina, J. Mol. Liq., 106, 215 (2003).

    Article  CAS  Google Scholar 

  52. M. N. Rodnikova, Yu. P. Syrnikov, N. V. Penkina, D. B. Kayumova, and N. A. Chumaevskii, Zh. Fiz. Khim., 79, No. 12, 2303 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rodnikova.

Additional information

Original Russian Text © 2014 M. N. Rodnikova, F. M. Samigullin, I. A. Solonina, D. A. Sirotkin.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 2, pp. 276–282, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodnikova, M.N., Samigullin, F.M., Solonina, I.A. et al. Molecular mobility and the structure of polar liquids. J Struct Chem 55, 256–262 (2014). https://doi.org/10.1134/S0022476614020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614020097

Keywords

Navigation